Suppr超能文献

呼吸下颌运动信号可可靠识别睡眠期间的阻塞性呼吸暂停低通气事件。

Respiratory Mandibular Movement Signals Reliably Identify Obstructive Hypopnea Events During Sleep.

作者信息

Martinot Jean-Benoit, Le-Dong Nhat-Nam, Cuthbert Valerie, Denison Stephane, Borel Jean C, Gozal David, Pépin Jean L

机构信息

Sleep Laboratory, CHU UCL Namur Site Sainte-Elisabeth, Namur, Belgium.

Institute of Experimental and Clinical Research, UCL Bruxelles Woluwe, Brussels, Belgium.

出版信息

Front Neurol. 2019 Aug 13;10:828. doi: 10.3389/fneur.2019.00828. eCollection 2019.

Abstract

Accurate discrimination between obstructive and central hypopneas requires quantitative assessments of respiratory effort by esophageal pressure (OeP) measurements, which preclude widespread implementation in sleep medicine practice. Mandibular Movement (MM) signals are closely associated with diaphragmatic effort during sleep. We aimed at reliably detecting obstructive off central hypopneas events using MM statistical characteristics. A bio-signal learning approach was implemented whereby raw MM fragments corresponding to normal breathing (NPB; = 501), central ( = 263), and obstructive hypopneas ( = 1861) were collected from 28 consecutive patients (mean age = 54 years, mean AHI = 34.7 n/h) undergoing in-lab polysomnography (PSG) coupled with a MM magnetometer, and OeP recordings. Twenty three input features were extracted from raw data fragments to explore distinctive changes in MM signals. A Random Forest model was built upon those input features to classify the central and obstructive hypopnea events. External validation and interpretive analysis were performed to evaluate the model's performance and the contribution of each feature to the model's output. Obstructive hypopneas were characterized by a longer duration (21.9 vs. 17.8 s, < 10), more extreme low values ( < 10), a more negative trend reflecting mouth opening amplitude, wider variation, and the asymmetrical distribution of MM amplitude. External validation showed a reliable performance of the MM features-based classification rule (Kappa coefficient = 0.879 and a balanced accuracy of 0.872). The interpretive analysis revealed that event duration, lower percentiles, central tendency, and the trend of MM amplitude were the most important determinants of events. MM signals can be used as surrogate markers of OeP to differentiate obstructive from central hypopneas during sleep.

摘要

准确区分阻塞性和中枢性呼吸暂停低通气需要通过食管压力(OeP)测量对呼吸努力进行定量评估,这使得其在睡眠医学实践中无法广泛应用。下颌运动(MM)信号与睡眠期间的膈肌努力密切相关。我们旨在利用MM的统计特征可靠地检测阻塞性与中枢性呼吸暂停低通气事件。实施了一种生物信号学习方法,从28例连续接受实验室多导睡眠图(PSG)检查并同时使用MM磁力计和OeP记录的患者(平均年龄 = 54岁,平均呼吸暂停低通气指数 = 34.7次/小时)中收集了与正常呼吸(NPB;n = 501)、中枢性(n = 263)和阻塞性呼吸暂停低通气(n = 1861)相对应的原始MM片段。从原始数据片段中提取了23个输入特征,以探索MM信号的独特变化。基于这些输入特征建立了随机森林模型,用于对中枢性和阻塞性呼吸暂停低通气事件进行分类。进行了外部验证和解释性分析,以评估模型的性能以及每个特征对模型输出的贡献。阻塞性呼吸暂停低通气的特征为持续时间更长(21.9秒对17.8秒,P < 0.01)、更低的极值(P < 0.01)、反映张口幅度的更负趋势、更大的变化范围以及MM幅度的不对称分布。外部验证显示基于MM特征的分类规则具有可靠的性能(卡帕系数 = 0.879,平衡准确率 = 0.872)。解释性分析表明,事件持续时间、较低百分位数、中心趋势以及MM幅度趋势是事件的最重要决定因素。MM信号可作为OeP的替代标志物,用于在睡眠期间区分阻塞性与中枢性呼吸暂停低通气。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b0/6701450/b5b1ce299d4d/fneur-10-00828-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验