Swain Gayatri, Sultana Sabiha, Naik Brundabana, Parida Kulamani
Centre for Nano Science and Nanotechnology, Siksha O Anusnadhan University, Bhubaneswar 751030, Odisha, India.
ACS Omega. 2017 Jul 19;2(7):3745-3753. doi: 10.1021/acsomega.7b00492. eCollection 2017 Jul 31.
In terms of solar hydrogen production, semiconductor-based photocatalysts via p-n heterojunctions play a key role in enhancing future hydrogen reservoir. The present work focuses on the successful synthesis and characterization of a novel p-MoS/n-CeO heterojunction photocatalyst for excellent performance toward solar hydrogen production. The synthesis involves a simple in situ hydrothermal process by varying the wt % of MoS. The various characterization techniques support the uniform distribution of CeO on the surface of crumpled MoS nanosheets, and the formation of p-n heterojunction is further confirmed by transmission electron microscopy and Mott-Schottky analysis. Throughout the experiment, it is demonstrated that 2 wt % MoS in the MoS/CeO heterojunction photocatalyst exhibits the highest rate of hydrogen evolution with a photocurrent density of 721 μA cm. The enhanced photocatalytic activity is ascribed to the formation of the p-n heterojunction that provides an internal electric field to facilitate the photogenerated charge separation and transfer.
就太阳能制氢而言,基于半导体的p-n异质结光催化剂在增加未来氢储存方面起着关键作用。目前的工作重点是成功合成并表征一种新型的p-MoS/n-CeO异质结光催化剂,该催化剂在太阳能制氢方面具有优异性能。合成过程涉及通过改变MoS的重量百分比进行简单的原位水热法。各种表征技术证实了CeO在皱巴巴的MoS纳米片表面均匀分布,并且通过透射电子显微镜和莫特-肖特基分析进一步证实了p-n异质结的形成。在整个实验过程中,结果表明MoS/CeO异质结光催化剂中2 wt%的MoS表现出最高的析氢速率,光电流密度为721 μA cm。光催化活性的提高归因于p-n异质结的形成,该异质结提供了一个内建电场,有助于光生电荷的分离和转移。