Tatykayev Batukhan, Donat Florian, Alem Halima, Balan Lavinia, Medjahdi Ghouti, Uralbekov Bolat, Schneider Raphaël
Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, 050040 Almaty, Kazakhstan.
Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.
ACS Omega. 2017 Aug 24;2(8):4946-4954. doi: 10.1021/acsomega.7b00673. eCollection 2017 Aug 31.
A facile two-step method was developed to prepare core/shell ZnO/rGO particles from ZIF-8/rGO composites. ZIF-8 particles were first grown at the surface of rGO sheets. Next, ZIF-8 particles were transformed into ZnO particles by thermal decomposition under air at 500 °C. All materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analyses. Results obtained show that ZIF-8 particles strongly associate with rGO sheets and that the calcination of this material produces porous core/shell ZnO/rGO particles with an average diameter of ca. 40 nm. The wt % of rGO associated with ZIF-8 particles was varied from 5 to 20%. The ZnO/rGO (10%) particles exhibit the highest photocatalytic activity for the degradation of the Orange II dye under simulated solar light irradiation of weak intensity (5 mW/cm). This high photocatalytic activity was demonstrated to originate from superoxide O radicals due to the efficient trapping of photogenerated electrons in ZnO by rGO.
开发了一种简便的两步法,用于从ZIF-8/rGO复合材料制备核壳结构的ZnO/rGO颗粒。首先在rGO片材表面生长ZIF-8颗粒。接下来,通过在500℃空气中热分解将ZIF-8颗粒转化为ZnO颗粒。所有材料均通过扫描电子显微镜、透射电子显微镜、X射线衍射、拉曼光谱、热重分析和布鲁诺尔-埃米特-泰勒分析进行表征。所得结果表明,ZIF-8颗粒与rGO片材强烈结合,并且该材料的煅烧产生平均直径约为40nm的多孔核壳结构ZnO/rGO颗粒。与ZIF-8颗粒结合的rGO的重量百分比在5%至20%之间变化。在弱强度(5mW/cm)的模拟太阳光照射下,ZnO/rGO(10%)颗粒对橙黄II染料的降解表现出最高的光催化活性。这种高光催化活性被证明源于超氧O 自由基,这是由于rGO对ZnO中光生电子的有效捕获。