Suppr超能文献

采用量子力学/分子力学计算的蛋白质/配体结合自由能。

Protein/ligand binding free energies calculated with quantum mechanics/molecular mechanics.

作者信息

Gräter Frauke, Schwarzl Sonja M, Dejaegere Annick, Fischer Stefan, Smith Jeremy C

机构信息

IWR--Computational Biochemistry, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.

出版信息

J Phys Chem B. 2005 May 26;109(20):10474-83. doi: 10.1021/jp044185y.

Abstract

The calculation of binding affinities for flexible ligands has hitherto required the availability of reliable molecular mechanics parameters for the ligands, a restriction that can in principle be lifted by using a mixed quantum mechanics/molecular mechanics (QM/MM) representation in which the ligand is treated quantum mechanically. The feasibility of this approach is evaluated here, combining QM/MM with the Poisson-Boltzmann/surface area model of continuum solvation and testing the method on a set of 47 benzamidine derivatives binding to trypsin. The experimental range of the absolute binding energy (DeltaG = -3.9 to -7.6 kcal/mol) is reproduced well, with a root-mean-square (RMS) error of 1.2 kcal/mol. When QM/MM is applied without reoptimization to the very different ligands of FK506 binding protein the RMS error is only 0.7 kcal/mol. The results show that QM/MM is a promising new avenue for automated docking and scoring of flexible ligands. Suggestions are made for further improvements in accuracy.

摘要

迄今为止,计算柔性配体的结合亲和力需要为配体提供可靠的分子力学参数,原则上可以通过使用混合量子力学/分子力学(QM/MM)表示法来消除这一限制,其中配体采用量子力学方法处理。本文评估了这种方法的可行性,将QM/MM与连续介质溶剂化的泊松-玻尔兹曼/表面积模型相结合,并在一组与胰蛋白酶结合的47种苯甲脒衍生物上测试了该方法。绝对结合能的实验范围(ΔG = -3.9至-7.6 kcal/mol)得到了很好的重现,均方根(RMS)误差为1.2 kcal/mol。当将QM/MM未经重新优化应用于与FK506结合蛋白差异很大的配体时,RMS误差仅为0.7 kcal/mol。结果表明,QM/MM是用于柔性配体自动对接和评分的一种很有前景的新方法。文中还提出了进一步提高准确性的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验