Dipartimento di Fisica , Università della Calabria , Rende , Italy.
Institute of Applied Physics , Vienna University of Technology , Vienna , Austria.
Langmuir. 2019 Dec 3;35(48):15481-15490. doi: 10.1021/acs.langmuir.9b01730. Epub 2019 Sep 11.
Using a surface forces apparatus and an atomic force microscope, we characterized the adhesive properties of adsorbed layers of two recombinant variants of foot protein 5 (PVFP-5), the main surface-binding protein in the adhesive plaque of the Asian green mussel. In one variant, all tyrosine residues were modified into 3,4-dihydroxy-l-phenylalanine (DOPA) during expression using a residue-specific incorporation strategy. DOPA is a key molecular moiety underlying underwater mussel adhesion. In the other variant, all tyrosine residues were preserved. The layer was adsorbed on a mica substrate and pressed against an uncoated surface. While DOPA produced a stronger adhesion than tyrosine in contact with the nanoscopic SiN probe of the atomic force microscope, the two variants produced comparable adhesion on the curved macroscopic mica surfaces of the surface forces apparatus. These findings show that the presence of DOPA is not a sufficient condition to generate strong underwater adhesion. Surface chemistry and contact geometry affect the strength and abundance of protein-surface bonds created during adsorption and surface contact. Importantly, the adsorbed protein layer has a random and dynamic polymer-network structure that should be optimized to transmit the tensile stress generated during surface separation to DOPA surface bonds rather than other weaker bonds.
利用表面力仪器和原子力显微镜,我们对两种重组亚洲贻贝黏附斑主要表面结合蛋白 5 (PVFP-5)的吸附层的黏附特性进行了表征。在一种变体中,通过使用残基特异性掺入策略,在表达过程中,所有的酪氨酸残基都被修饰成 3,4-二羟基-l-苯丙氨酸(DOPA)。DOPA 是水下贻贝黏附的关键分子部分。在另一种变体中,所有的酪氨酸残基都被保留下来。该层被吸附在云母基底上,并与未涂覆的表面相接触。虽然 DOPA 与原子力显微镜纳米级 SiN 探针接触时产生的黏附力强于酪氨酸,但两种变体在表面力仪器的弯曲宏观云母表面上产生的黏附力相当。这些发现表明,DOPA 的存在不是产生水下强黏附力的充分条件。表面化学和接触几何形状会影响吸附和表面接触过程中形成的蛋白质-表面键的强度和丰度。重要的是,吸附的蛋白质层具有随机和动态的聚合物网络结构,应该进行优化,以将表面分离过程中产生的拉伸应力传递到 DOPA 表面键上,而不是其他较弱的键上。