Materials and Physical Biology Division, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Sci Adv. 2019 Aug 23;5(8):eaax3155. doi: 10.1126/sciadv.aax3155. eCollection 2019 Aug.
Many biological materials form via liquid-liquid phase separation (LLPS), followed by maturation into a solid-like state. Here, using a biologically inspired assembly mechanism designed to recapitulate these sequential assemblies, we develop ultrastrong underwater adhesives made from engineered proteins containing mammalian low-complexity (LC) domains. We show that LC domain-mediated LLPS and maturation substantially promotes the wetting, adsorption, priming, and formation of dense, uniform amyloid nanofiber coatings on diverse surfaces (e.g., Teflon), and even penetrating difficult-to-access locations such as the interiors of microfluidic devices. Notably, these coatings can be deposited on substrates over a broad range of pH values (3 to 11) and salt concentrations (up to 1 M NaCl) and exhibit strong underwater adhesion performance. Beyond demonstrating the utility of mammalian LC domains for driving LLPS in soft materials applications, our study illustrates a powerful example of how combining LLPS with subsequent maturation steps can be harnessed for engineering protein-based materials.
许多生物材料通过液-液相分离(LLPS)形成,然后成熟为类似固体的状态。在这里,我们使用一种受生物启发的组装机制来模拟这些连续的组装,开发出由含有哺乳动物低复杂度(LC)结构域的工程蛋白制成的超强水下胶粘剂。我们表明,LC 结构域介导的液-液相分离和成熟过程极大地促进了在各种表面(例如特氟龙)上形成湿润、吸附、引发和形成致密、均匀的淀粉样纤维纳米涂层,甚至可以渗透到难以触及的位置,如微流控设备的内部。值得注意的是,这些涂层可以在很宽的 pH 值(3 至 11)和盐浓度(高达 1 M NaCl)范围内沉积在基底上,并表现出很强的水下附着力。除了展示哺乳动物 LC 结构域在软物质应用中驱动 LLPS 的实用性外,我们的研究还说明了如何将 LLPS 与后续成熟步骤相结合,用于工程蛋白基材料的一个有力示例。