Suppr超能文献

非小细胞肺癌中的血浆生物标志物与免疫检查点抑制剂:用于更好地选择患者的新工具?

Plasma Biomarkers and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: New Tools for Better Patient Selection?

作者信息

Costantini Adrien, Takam Kamga Paul, Dumenil Coraline, Chinet Thierry, Emile Jean-François, Giroux Leprieur Etienne

机构信息

Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France.

EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France.

出版信息

Cancers (Basel). 2019 Aug 29;11(9):1269. doi: 10.3390/cancers11091269.

Abstract

Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for patients with non-small cell lung cancer (NSCLC). Although some patients can experience important response rates and improved survival, many others do not benefit from ICIs developing hyper-progressive disease or immune-related adverse events. This underlines the need to select biomarkers for ICIs use in order to better select patients. There is currently no universally validated robust biomarker for daily use of ICIs. Programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB) are sometimes used but still have several limitations. Plasma biomarkers are a promising approach in ICI treatment. This review will describe the development of novel plasma biomarkers such as soluble proteins, circulating tumor DNA (ctDNA), blood TMB, and blood microbiome in NSCLC patients treated with ICIs and their potential use in predicting response and toxicity.

摘要

免疫检查点抑制剂(ICIs)已经改变了非小细胞肺癌(NSCLC)患者的治疗格局。尽管一些患者能够获得显著的缓解率并延长生存期,但许多其他患者并未从ICIs治疗中获益,反而出现了疾病超进展或免疫相关不良事件。这凸显了选择ICIs生物标志物以更好地筛选患者的必要性。目前尚无用于ICIs日常使用的普遍验证的可靠生物标志物。程序性死亡配体1(PD-L1)或肿瘤突变负荷(TMB)有时会被使用,但仍有一些局限性。血浆生物标志物在ICI治疗中是一种有前景的方法。本综述将描述在接受ICIs治疗的NSCLC患者中新型血浆生物标志物的发展,如可溶性蛋白、循环肿瘤DNA(ctDNA)、血液TMB和血液微生物组,以及它们在预测疗效和毒性方面的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de3a/6769436/13a6c03893b0/cancers-11-01269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验