Ge Pengfei, Ren Chuan-Xian, Dai Dao-Qing, Feng Jiashi, Yan Shuicheng
IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1417-1424. doi: 10.1109/TNNLS.2019.2919948. Epub 2019 Jun 20.
As a powerful approach for exploratory data analysis, unsupervised clustering is a fundamental task in computer vision and pattern recognition. Many clustering algorithms have been developed, but most of them perform unsatisfactorily on the data with complex structures. Recently, adversarial autoencoder (AE) (AAE) shows effectiveness on tackling such data by combining AE and adversarial training, but it cannot effectively extract classification information from the unlabeled data. In this brief, we propose dual AAE (Dual-AAE) which simultaneously maximizes the likelihood function and mutual information between observed examples and a subset of latent variables. By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of AEs. Moreover, to avoid mode collapse, we introduce the clustering regularization term for the category variable. Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods. In addition, by adding a reject option, the clustering accuracy of Dual-AAE can reach that of supervised CNN algorithms. Dual-AAE can also be used for disentangling style and content of images without using supervised information.
作为探索性数据分析的一种强大方法,无监督聚类是计算机视觉和模式识别中的一项基本任务。已经开发了许多聚类算法,但其中大多数在处理具有复杂结构的数据时表现不佳。最近,对抗自编码器(AE)(AAE)通过结合AE和对抗训练在处理此类数据方面显示出有效性,但它不能有效地从未标记数据中提取分类信息。在本简报中,我们提出了双对抗自编码器(Dual-AAE),它同时最大化观察到的示例与潜在变量子集之间的似然函数和互信息。通过对Dual-AAE的目标函数进行变分推理,我们推导出了一种新的重构损失,它可以通过训练一对自编码器来优化。此外,为了避免模式坍塌,我们为类别变量引入了聚类正则化项。在四个基准上的实验表明,Dual-AAE比现有聚类方法具有更优的性能。此外,通过添加拒绝选项,Dual-AAE的聚类准确率可以达到有监督卷积神经网络算法的准确率。Dual-AAE还可以用于在不使用监督信息的情况下解开图像的风格和内容。