Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702, Republic of Korea.
Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702, Republic of Korea.
Anal Chim Acta. 2019 Nov 15;1082:152-164. doi: 10.1016/j.aca.2019.07.053. Epub 2019 Jul 27.
Development of simultaneous bacteria detection and eradication with simple, rapid, and reusable material is important in addressing bacterial contamination issues. In this study, we utilized the expression of alkaline phosphatase (ALP) from bacteria to design fluorescence ON/OFF system for bacteria detection, also using metal oxide nanoparticle for obtaining antibacterial activity and recyclability. The fluorescent-based biosensor with antibacterial activity was prepared by intercalating ALP-sensitive polymer dot (PD) containing β-cyclodextrin (β-CD) onto montmorillonite (MMT) as loading matrix via ionic exchange reaction, followed by immobilization of magnetic iron oxide (FeO) and NIR-responsive cesium tungsten oxide (CsWO). The PD-βCD-MMT/FeO-CsWO nanocomposite exhibited strong fluorescence intensity, which was quenched in the presence of bacterial ALP (0-1000 U/L) due to hydrolysis of p-nitrophenyl phosphate (NPP) into p-nitrophenol (NP) in the hydrophobic site of β-CD. Furthermore, the nanocomposite could detect both gram-negative Escherichia coli and gram-positive Staphylococcus aureus in the range of 10-10 CFU/mL (LOD 5.09 and 4.62 CFU/mL, respectively), and showed high antibacterial activity against bacteria by generating photothermal heat under 5 min NIR irradiation, causing damage to bacterial cells. This material also demonstrated recyclability via magnetic field exposure due to the presence of FeO In addition, the fluorescence can be recovered following pH shock and re-conjugation of β-CD molecules. After 4 cycles, nanocomposite still showed stable photothermal effects and fluorescence-based bacteria detection. Thus, this reusable material offers promising approach for simultaneous bacteria detection and killing, which is simple, rapid, and effective.
开发简便、快速、可重复使用的同时细菌检测和消除的材料对于解决细菌污染问题非常重要。在这项研究中,我们利用细菌碱性磷酸酶 (ALP) 的表达设计了用于细菌检测的荧光开/关系统,同时还使用了金属氧化物纳米颗粒来获得抗菌活性和可回收性。通过离子交换反应,将含有 β-环糊精 (β-CD) 的 ALP 敏感聚合物点 (PD) 插入蒙脱土 (MMT) 作为负载基质中,制备了具有抗菌活性的荧光基于生物传感器,然后通过固定磁性氧化铁 (FeO) 和近红外响应的钨酸铯 (CsWO)。PD-βCD-MMT/FeO-CsWO 纳米复合材料表现出很强的荧光强度,由于在β-CD 的疏水性部位中 p-硝基苯磷酸酯 (NPP) 被水解成对硝基苯酚 (NP),当存在细菌 ALP(0-1000 U/L)时,荧光强度被猝灭。此外,该纳米复合材料能够在 10-10 CFU/mL 的范围内检测革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌(分别为 5.09 和 4.62 CFU/mL,LOD),并通过在 5 分钟的近红外辐射下产生光热,对细菌细胞造成损伤,表现出高抗菌活性。由于存在 FeO,这种材料还可以通过磁场暴露进行回收。此外,在 pH 冲击和β-CD 分子重新共轭后,荧光可以恢复。经过 4 个循环,纳米复合材料仍表现出稳定的光热效应和基于荧光的细菌检测。因此,这种可重复使用的材料为同时进行细菌检测和杀灭提供了一种有前途的方法,该方法简单、快速、有效。