Computational Biology Lab, Fundación Ciencia & Vida, Santiago 7780272, Chile.
Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago 8420524, Chile.
Int J Mol Sci. 2023 Jul 13;24(14):11397. doi: 10.3390/ijms241411397.
This study takes a step in understanding the physiological implications of the nanosecond pulsed electric field (nsPEF) by integrating molecular dynamics simulations and machine learning techniques. nsPEF, a state-of-the-art technology, uses high-voltage electric field pulses with a nanosecond duration to modulate cellular activity. This investigation reveals a relatively new and underexplored phenomenon: protein-mediated electroporation. Our research focused on the voltage-sensing domain (VSD) of the NaV1.5 sodium cardiac channel in response to nsPEF stimulation. We scrutinized the VSD structures that form pores and thereby contribute to the physical chemistry that governs the defibrillation effect of nsPEF. To do so, we conducted a comprehensive analysis involving the clustering of 142 replicas simulated for 50 ns under nsPEF stimuli. We subsequently pinpointed the representative structures of each cluster and computed the free energy between them. We find that the selected VSD of NaV1.5 forms pores under nsPEF stimulation, but in a way that significant differs from the traditional VSD opening. This study not only extends our understanding of nsPEF and its interaction with protein channels but also adds a new effect to further study.
本研究通过整合分子动力学模拟和机器学习技术,在理解纳秒级脉冲电场(nsPEF)的生理意义方面迈出了一步。nsPEF 是一种先进的技术,利用纳秒级持续时间的高压电场脉冲来调节细胞活动。这项研究揭示了一种相对较新且尚未充分探索的现象:蛋白介导的电穿孔。我们的研究集中在 NaV1.5 钠心脏通道的电压感应结构域(VSD)对 nsPEF 刺激的反应。我们仔细研究了形成孔的 VSD 结构,从而有助于控制 nsPEF 除颤效果的物理化学。为此,我们对在 nsPEF 刺激下模拟 50 ns 的 142 个副本进行了聚类分析。随后,我们确定了每个簇的代表性结构,并计算了它们之间的自由能。我们发现,所选的 NaV1.5 VSD 在 nsPEF 刺激下形成孔,但方式与传统的 VSD 打开方式显著不同。这项研究不仅扩展了我们对 nsPEF 及其与蛋白通道相互作用的理解,还增加了一个新的效应来进一步研究。