Cotton Fiber Bioscience Research Unit, USDA ARS SRRC, New Orleans, LA, 70124, USA.
Sugarcane Production Research Unit, USDA-ARS, 12990 US Hwy 441 N, Canal Point, FL, 33438, USA.
Mol Genet Genomics. 2020 Jan;295(1):67-79. doi: 10.1007/s00438-019-01599-z. Epub 2019 Aug 31.
The use of genomic selection (GS) has stimulated a new way to utilize molecular markers in breeding for complex traits in the absence of phenotypic data. GS can potentially decrease breeding cycle by selecting the progeny in the early stages. The objective of this study was to experimentally evaluate the potential value of genomic selection in Upland cotton breeding. Six fiber quality traits were obtained in 3 years of replicated field trials in Starkville, MS. Genotyping-by-sequencing-based genotyping was performed using 550 recombinant inbred lines of the multi-parent advanced generation inter-cross population, and 6292 molecular markers were used for the GS analysis. Several methods were compared including genomic BLUP (GBLUP), ridge regression BLUP (rrBLUP), BayesB, Bayesian LASSO, and reproducing kernel hilbert spaces (RKHS). The average heritability (h) ranged from 0.38 to 0.88 for all tested traits across the 3 years evaluated. BayesB predicted the highest accuracies among the five GS methods tested. The prediction ability (PA) and prediction accuracy (PACC) varied widely across 3 years for all tested traits and the highest PA and PACC were 0.65, and 0.69, respectively, in 2010 for fiber elongation. Marker density and training population size appeared to be very important factors for PA and PACC in GS. Results indicated that BayesB-based GS method could predict genomic estimated breeding value efficiently in Upland cotton fiber quality attributes and has great potential utility in breeding by reducing cost and time.
基因组选择(GS)的应用为在缺乏表型数据的情况下利用分子标记进行复杂性状的育种提供了一种新方法。GS 可以通过在早期选择后代,潜在地缩短育种周期。本研究的目的是实验评估 GS 在陆地棉育种中的潜在价值。在密西西比州斯塔克维尔的 3 年重复田间试验中获得了 6 个纤维品质性状。使用多亲本高级世代互交群体的 550 个重组自交系进行基于测序的基因型分型,并使用 6292 个分子标记进行 GS 分析。比较了几种方法,包括基因组 BLUP(GBLUP)、岭回归 BLUP(rrBLUP)、贝叶斯 B(BayesB)、贝叶斯 LASSO 和再生核希尔伯特空间(RKHS)。在 3 年评估的所有测试性状中,平均遗传力(h)范围为 0.38 至 0.88。在测试的五种 GS 方法中,BayesB 预测的准确性最高。在 3 年中,所有测试性状的预测能力(PA)和预测准确性(PACC)差异很大,在 2010 年,纤维伸长率的最高 PA 和 PACC 分别为 0.65 和 0.69。标记密度和训练群体大小似乎是 GS 中 PA 和 PACC 的非常重要因素。结果表明,基于 BayesB 的 GS 方法可以有效地预测陆地棉纤维品质性状的基因组估计育种值,并且通过降低成本和时间,在育种中具有很大的潜在应用价值。