Suppr超能文献

基于原子磁力计的磁化率法成像磁性纳米粒子分布。

Imaging Magnetic Nanoparticle Distributions by Atomic Magnetometry-Based Susceptometry.

出版信息

IEEE Trans Med Imaging. 2020 Apr;39(4):922-933. doi: 10.1109/TMI.2019.2937670. Epub 2019 Aug 26.

Abstract

We introduce a Magnetic Particle Imaging Susceptometer (MPIS) that uses a high-sensitivity atomic magnetometer (AM) for recording the spatial distribution of fluid-suspended magnetic nanoparticles. We have evaluated the MPIS performance by one-dimensional scans of structured nanoparticle phantoms, demonstrating, in particular, resolutions of ≈2.5 mm prior to deconvolution and << 1 mm after deconvolution. Our instrument conceptually follows the general principle of Magnetic Particle Imaging (MPI) for encoding spatial distributions into magnetic flux density variations. Conversely to previously demonstrated MPI methods, MPIS works in time-space by recording time series of the sample's magnetic response including all Fourier components. The device deploys a specifically designed system of coils, a low-frequency excitation scheme, and a simple source localization algorithm. The difference of the AM's frequency response with respect to the conventional receive coil detection allows us to work at much lower driving frequencies. We demonstrate operation at frequencies on the order of 100 Hz, enabling the beneficial use of larger nanoparticles. The spatial distribution encoded into the particles' susceptibility needs a much lower excitation field amplitude compared to conventional MPI scanners. These two features make MPIS least harmful for biological samples and subjects compared to conventional MPI scanners. We also address performance characteristics and other possible applications of MPIS.

摘要

我们介绍了一种使用高灵敏度原子磁力计 (AM) 记录悬浮在流体中的磁性纳米粒子空间分布的磁粒子成像传感器 (MPIS)。我们通过对结构纳米粒子模型的一维扫描来评估 MPIS 的性能,特别是在去卷积之前分辨率约为 2.5 毫米,去卷积后分辨率小于 1 毫米。我们的仪器概念上遵循了将空间分布编码为磁通密度变化的磁粒子成像 (MPI) 的一般原理。与以前展示的 MPI 方法相反,MPIS 通过记录包括所有傅里叶分量的样品磁响应的时间序列在时间-空间中工作。该设备采用了专门设计的线圈系统、低频激励方案和简单的源定位算法。与传统接收线圈检测相比,AM 的频率响应的差异使我们能够在低得多的驱动频率下工作。我们证明了在 100 Hz 量级的频率下的操作,从而可以使用更大的纳米粒子。与传统的 MPI 扫描仪相比,编码到粒子磁化率中的空间分布需要低得多的激励场幅度。这两个特性使得与传统的 MPI 扫描仪相比,MPIS 对生物样本和受试者的危害最小。我们还讨论了 MPIS 的性能特点和其他可能的应用。

相似文献

6
Trajectory analysis for field free line magnetic particle imaging.无场线磁粒子成像的轨迹分析。
Med Phys. 2019 Apr;46(4):1592-1607. doi: 10.1002/mp.13411. Epub 2019 Feb 22.
7
Linearity and shift invariance for quantitative magnetic particle imaging.定量磁粒子成像的线性和位移不变性。
IEEE Trans Med Imaging. 2013 Sep;32(9):1565-75. doi: 10.1109/TMI.2013.2257177. Epub 2013 Apr 5.
9
Magnetic particle imaging: current developments and future directions.磁粒子成像:当前进展与未来方向。
Int J Nanomedicine. 2015 Apr 22;10:3097-114. doi: 10.2147/IJN.S70488. eCollection 2015.
10
A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.用于磁粒子成像X空间重建的凸形式化方法。
PLoS One. 2015 Oct 23;10(10):e0140137. doi: 10.1371/journal.pone.0140137. eCollection 2015.

本文引用的文献

1
Pulsed Excitation in Magnetic Particle Imaging.脉冲激励在磁粒子成像中的应用。
IEEE Trans Med Imaging. 2019 Oct;38(10):2389-2399. doi: 10.1109/TMI.2019.2898202. Epub 2019 Feb 11.
8
9
2D Images Recorded With a Single-Sided Magnetic Particle Imaging Scanner.用单面磁粒子成像扫描仪记录的 2D 图像。
IEEE Trans Med Imaging. 2016 Apr;35(4):1056-65. doi: 10.1109/TMI.2015.2507187. Epub 2015 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验