Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States.
National High Magnetic Field Laboratory, Florida State University , Tallahassee , Florida 32310 , United States.
J Phys Chem B. 2019 Sep 26;123(38):8034-8047. doi: 10.1021/acs.jpcb.9b06034. Epub 2019 Sep 17.
Transmembrane domains of membrane proteins sometimes contain conserved charged or ionizable residues which may be essential for protein function and regulation. This work examines the molecular interactions of single Arg residues within a highly dynamic transmembrane peptide helix. To this end, we have modified the GWALP23 (acetyl-GGAW(AL)AWAGA-amide) model peptide framework to incorporate Arg residues near the center of the peptide. Peptide helix formation, orientation and dynamics were analyzed by means of solid-state NMR spectroscopy to monitor specific H- or N-labeled residues. GWALP23 itself adopts a tilted orientation within lipid bilayer membranes. Nevertheless, the GWALP23 helix exhibits moderate to high dynamic averaging of NMR observables, such as H quadrupolar splittings or N-H dipolar couplings, due to competition between the interfacial Trp residues on opposing helix faces. Here we examine how the helix dynamics are impacted by the introduction of a single Arg residue at position 12 or 14. Residue R14 restricts the helix to low dynamic averaging and a well-defined tilt that varies inversely with the lipid bilayer thickness. To compensate for the dominance of R14, the competing Trp residues cause partial unwinding of the helix at the C-terminal. By contrast, RGWALP23 exits the DOPC bilayer to an interfacial surface-bound location. Interestingly, multiple orientations are exhibited by a single residue, Ala-9. Quadrupolar splittings generated by H-labeled residues A3, A5, A7, and A9 do not fit to the α-helical quadrupolar wave plot defined by residues A11, A13, A15, A17, A19, and A21. The discontinuity at residue A9 implicates a helical swivel distortion and an apparent 3-helix involving the N-terminal residues preceding A11. These molecular features suggest that, while arginine residues are prominent factors controlling transmembrane helix dynamics, the influence of interfacial tryptophan residues cannot be ignored.
膜蛋白的跨膜结构域有时包含保守的带电或可离子化残基,这些残基可能对蛋白质的功能和调节至关重要。本工作研究了高度动态跨膜肽螺旋中单个精氨酸残基的分子相互作用。为此,我们对 GWALP23(乙酰-GGAW(AL)AWAGA-酰胺)模型肽骨架进行了修饰,在肽的中心附近引入了精氨酸残基。通过固态 NMR 光谱学分析肽螺旋的形成、取向和动力学,以监测特定的 H 或 N 标记的残基。GWALP23 本身在脂质双层膜内采用倾斜取向。然而,GWALP23 螺旋表现出中等至高的 NMR 可观测值的动态平均化,例如 H 四极分裂或 N-H 偶极耦合,这是由于 opposing helix faces 上的界面色氨酸残基之间的竞争所致。在这里,我们研究了在位置 12 或 14 引入单个精氨酸残基如何影响螺旋动力学。残基 R14 将螺旋限制在低动态平均化和与脂质双层厚度成反比的明确倾斜。为了补偿 R14 的主导地位,竞争色氨酸残基导致螺旋在 C 末端部分展开。相比之下,RGWALP23 从 DOPC 双层膜中退出到界面表面结合位置。有趣的是,单个残基 Ala-9 表现出多种取向。由 H 标记的残基 A3、A5、A7 和 A9 产生的四极分裂不符合由残基 A11、A13、A15、A17、A19 和 A21 定义的α-螺旋四极波图。残基 A9 的不连续性暗示了螺旋旋转扭曲和明显的 3 螺旋,涉及 A11 之前的 N 末端残基。这些分子特征表明,虽然精氨酸残基是控制跨膜螺旋动力学的主要因素,但界面色氨酸残基的影响不容忽视。