Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.
Biochemistry. 2011 Sep 6;50(35):7522-35. doi: 10.1021/bi2006459. Epub 2011 Aug 12.
While the interfacial partitioning of charged or aromatic anchor residues may determine the preferred orientations of transmembrane peptide helices, the dependence of helix orientation on anchor residue position is not well understood. When anchor residue locations are changed systematically, some adaptations of the peptide-lipid interactions may be required to compensate for the altered interfacial interactions. Recently, we have developed a novel transmembrane peptide, termed GW(5,19)ALP23 (acetyl-GGALW(5)LALALALALALALW(19)LAGA-ethanolamide), which proves to be a well-behaved sequence for an orderly investigation of protein-lipid interactions. Its roughly symmetric nature allows for shifting the anchoring Trp residues by one Leu-Ala pair inward (GW(7,17)ALP23) or outward (GW(3,21)ALP23), thus providing fine adjustments of the formal distance between the tryptophan residues. With no other obvious anchoring features present, we postulate that the inter-Trp distance may be crucial for aspects of the peptide-lipid interaction. Importantly, the amino acid composition is identical for each of the resulting related GWALP23 sequences, and the radial separation between the pairs of Trp residues on each side of the transmembrane α-helix remains similar. Here we address the adaptation of the aforementioned peptides to the varying Trp locations by means of solid-state (2)H nuclear magnetic resonance experiments in varying lipid bilayer membrane environments. All of the GW(x,y)ALP23 sequence isomers adopt transmembrane orientations in DOPC, DMPC, and DLPC environments, even when the Trp residues are quite closely spaced, in GW(7,17)ALP23. Furthermore, the dynamics for each peptide isomer are less extensive than for peptides possessing additional interfacial Trp residues. The helical secondary structure is maintained more strongly within the Trp-flanked core region than outside of the Trp boundaries. Deuterium-labeled tryptophan indole rings in the GW(x,y)ALP23 peptides provide additional insights into the behavior of the Trp side chains. A Trp side chain near the C-terminus adopts a different orientation and undergoes somewhat faster dynamics than a corresponding Trp side chain located an equivalent distance from the N-terminus. In contrast, as the inter-Trp distance changes, the variations among the average orientations of the Trp indole rings at either terminus are systematic yet fairly small. We conclude that subtle adjustments to the peptide tilt, and to the N- and C-terminal Trp side chain torsion angles, permit the GW(x,y)ALP23 peptides to maintain preferred transmembrane orientations while adapting to lipid bilayers with differing hydrophobic thicknesses.
虽然带电或芳香锚定残基的界面分区可能决定跨膜肽螺旋的优先取向,但螺旋取向对锚定残基位置的依赖性还不是很清楚。当锚定残基位置被系统地改变时,可能需要对肽-脂相互作用进行一些适应性调整,以补偿界面相互作用的改变。最近,我们开发了一种新型的跨膜肽,称为 GW(5,19)ALP23(乙酰-GGALW(5)LALALALALALW(19)LAGA-乙醇酰胺),它被证明是一种用于有序研究蛋白质-脂相互作用的良好序列。它的大致对称性质允许将锚定色氨酸残基向内(GW(7,17)ALP23)或向外(GW(3,21)ALP23)移动一个 Leu-Ala 对,从而对色氨酸残基之间的形式距离进行微调。由于没有其他明显的锚定特征,我们假设色氨酸间距可能对肽-脂相互作用的某些方面至关重要。重要的是,对于每个所得的相关 GWALP23 序列,氨基酸组成都是相同的,并且跨膜α-螺旋两侧的色氨酸残基对之间的径向分离仍然相似。在这里,我们通过在不同脂质双层膜环境中进行固态(2)H 核磁共振实验来研究上述肽的适应不同色氨酸位置的情况。即使色氨酸残基非常接近,在 GW(7,17)ALP23 中,所有 GW(x,y)ALP23 序列异构体都采用 DOPC、DMPC 和 DLPC 环境中的跨膜取向。此外,与具有额外界面色氨酸残基的肽相比,每个肽异构体的动力学范围都不那么广泛。螺旋二级结构在色氨酸侧翼核心区域内比在色氨酸边界外保持得更强烈。在 GW(x,y)ALP23 肽中,氘标记的色氨酸吲哚环提供了对色氨酸侧链行为的更多见解。靠近 C 末端的色氨酸侧链采用不同的取向,并经历比从 N 末端等距离处的相应色氨酸侧链稍快的动力学。相比之下,随着色氨酸间距的变化,任一端的色氨酸吲哚环的平均取向之间的变化是系统的,但相当小。我们得出结论,肽倾斜度的细微调整以及 N 和 C 末端色氨酸侧链扭转角的调整允许 GW(x,y)ALP23 肽在适应具有不同疏水性厚度的脂质双层时保持优先的跨膜取向。