Suppr超能文献

预测登革热医学诊断的模型:以巴拉圭为例的案例研究。

Predictive Models for the Medical Diagnosis of Dengue: A Case Study in Paraguay.

机构信息

Universidad Nacional de Concepción, Concepción 8700, Paraguay.

Universidad Nacional de Asunción, San Lorenzo 2111, Paraguay.

出版信息

Comput Math Methods Med. 2019 Jul 29;2019:7307803. doi: 10.1155/2019/7307803. eCollection 2019.

Abstract

Early diagnosis of dengue continues to be a concern for public health in countries with a high incidence of this disease. In this work, we compared two machine learning techniques: artificial neural networks (ANN) and support vector machines (SVM) as assistance tools for medical diagnosis. The performance of classification models was evaluated in a real dataset of patients with a previous diagnosis of dengue extracted from the public health system of Paraguay during the period 2012-2016. The ANN multilayer perceptron achieved better results with an average of 96% accuracy, 96% sensitivity, and 97% specificity, with low variation in thirty different partitions of the dataset. In comparison, SVM polynomial obtained results above 90% for accuracy, sensitivity, and specificity.

摘要

登革热的早期诊断仍然是发病率高的国家公共卫生关注的问题。在这项工作中,我们比较了两种机器学习技术:人工神经网络(ANN)和支持向量机(SVM),作为医学诊断的辅助工具。分类模型的性能在从 2012 年至 2016 年期间从巴拉圭公共卫生系统提取的具有以前登革热诊断的患者的真实数据集上进行了评估。ANN 多层感知器的平均准确率为 96%,灵敏度为 96%,特异性为 97%,数据集的三十个不同分区的变化较小。相比之下,SVM 多项式的准确率、灵敏度和特异性均高于 90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5648/6702853/447d9eec2bfa/CMMM2019-7307803.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验