Suppr超能文献

3D 计算模型解释了鱼类游动中肌肉的激活模式和内部结构的能量功能。

3D computational models explain muscle activation patterns and energetic functions of internal structures in fish swimming.

机构信息

Beijing Computational Science Research Center, Haidian District, Beijing, China.

Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

PLoS Comput Biol. 2019 Sep 5;15(9):e1006883. doi: 10.1371/journal.pcbi.1006883. eCollection 2019 Sep.

Abstract

How muscles are used is a key to understanding the internal driving of fish swimming. However, the underlying mechanisms of some features of the muscle activation patterns and their differential appearance in different species are still obscure. In this study, we explain the muscle activation patterns by using 3D computational fluid dynamics models coupled to the motion of fish with prescribed deformation and examining the torque and power required along the fish body with two primary swimming modes. We find that the torque required by the hydrodynamic forces and body inertia exhibits a wave pattern that travels faster than the curvature wave in both anguilliform and carangiform swimmers, which can explain the traveling wave speeds of the muscle activations. Notably, intermittent negative power (i.e., power delivered by the fluid to the body) on the posterior part, along with a timely transfer of torque and energy by tendons, explains the decrease in the duration of muscle activation towards the tail. The torque contribution from the body elasticity further clarifies the wave speed increase or the reverse of the wave direction of the muscle activation on the posterior part of a carangiform swimmer. For anguilliform swimmers, the absence of the aforementioned changes in the muscle activation on the posterior part is consistent with our torque prediction and the absence of long tendons from experimental observations. These results provide novel insights into the functions of muscles and tendons as an integral part of the internal driving system, especially from an energy perspective, and they highlight the differences in the internal driving systems between the two primary swimming modes.

摘要

肌肉的使用方式是理解鱼类游动内部驱动力的关键。然而,肌肉激活模式的一些特征的潜在机制及其在不同物种中的不同表现仍然不清楚。在这项研究中,我们通过使用 3D 计算流体动力学模型来解释肌肉激活模式,该模型与具有规定变形的鱼类运动相结合,并检查两种主要游泳模式下沿鱼体所需的扭矩和功率。我们发现,水动力和身体惯性所需的扭矩表现出一种波型,在鳗鲡形和鲭形游泳者中比曲率波传播得更快,这可以解释肌肉激活的行波速度。值得注意的是,在后部间歇性的负功率(即流体传递给身体的功率),以及肌腱及时传递扭矩和能量,可以解释肌肉激活持续时间向尾部减少的原因。身体弹性的扭矩贡献进一步澄清了鲭形游泳者后部肌肉激活的波速增加或波方向的反转。对于鳗鲡形游泳者,后部肌肉激活没有出现上述变化,这与我们的扭矩预测以及实验观察到的长肌腱缺失一致。这些结果为肌肉和肌腱作为内部驱动系统的一个组成部分的功能提供了新的见解,特别是从能量的角度来看,它们突出了两种主要游泳模式之间内部驱动系统的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验