Suppr超能文献

老虎的离奇故事:数据不当与科学不足的案例

Twisted tale of the tiger: the case of inappropriate data and deficient science.

作者信息

Qureshi Qamar, Gopal Rajesh, Jhala Yadvendradev

机构信息

Wildlife Institute of India, Dehradun, Uttarakhand, India.

Global Tiger Forum, New Delhi, Delhi, India.

出版信息

PeerJ. 2019 Aug 20;7:e7482. doi: 10.7717/peerj.7482. eCollection 2019.

Abstract

Publications in peer-reviewed journals are often looked upon as tenets on which future scientific thought is built. Published information is not always flawless and errors in published research should be expediently reported, preferably by a peer-review process. We review a recent publication by Gopalaswamy et al. (10.1111/2041-210X.12351) that challenges the use of "double sampling" in large-scale animal surveys. Double sampling is often resorted to as an established economical and practical approach for large-scale surveys since it calibrates abundance indices against absolute abundance, thereby potentially addressing the statistical shortfalls of indices. Empirical data used by Gopalaswamy et al. (10.1111/2041-210X.12351) to test their theoretical model, relate to tiger sign and tiger abundance referred to as an Index-Calibration experiment (IC-Karanth). These data on tiger abundance and signs should be paired in time and space to qualify as a calibration experiment for double sampling, but original data of IC-Karanth show lags of (up to) several years. Further, data points used in the paper do not match the original sources. We show that by use of inappropriate and incorrect data collected through a faulty experimental design, poor parameterization of their theoretical model, and selectively picked estimates from literature on detection probability, the inferences of this paper are highly questionable. We highlight how the results of Gopalaswamy et al. were further distorted in popular media. If left unaddressed, the paper of Gopalaswamy et al. could have serious implications on statistical design of large-scale animal surveys by propagating unreliable inferences.

摘要

在同行评审期刊上发表的论文通常被视为构建未来科学思想的原则。已发表的信息并非总是完美无缺,已发表研究中的错误应尽快报告,最好通过同行评审过程。我们回顾了戈帕拉斯瓦米等人最近发表的一篇论文(10.1111/2041 - 210X.12351),该论文对大规模动物调查中“双重抽样”的使用提出了质疑。双重抽样常被用作大规模调查一种既定的经济实用方法,因为它根据绝对丰度校准丰度指数,从而有可能解决指数的统计缺陷。戈帕拉斯瓦米等人(10.1111/2041 - 210X.12351)用于检验其理论模型的实证数据,涉及老虎踪迹和老虎丰度,称为指数校准实验(IC - 卡兰特)。这些关于老虎丰度和踪迹的数据应在时间和空间上配对,才能符合双重抽样校准实验的条件,但IC - 卡兰特的原始数据显示(长达)数年的滞后。此外,该论文中使用的数据点与原始来源不匹配。我们表明,通过使用因错误实验设计收集的不恰当和不正确数据、其理论模型的参数化不佳以及从检测概率文献中选择性挑选的估计值,该论文的推论极具疑问。我们强调了戈帕拉斯瓦米等人的研究结果在大众媒体中是如何被进一步扭曲的。如果不加以解决,戈帕拉斯瓦米等人的论文可能会通过传播不可靠的推论,对大规模动物调查的统计设计产生严重影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db4b/6707339/4441387467a3/peerj-07-7482-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验