School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China.
Cells. 2019 Sep 6;8(9):1040. doi: 10.3390/cells8091040.
The important role of microRNAs (miRNAs) in the formation, development, diagnosis, and treatment of diseases has attracted much attention among researchers recently. In this study, we present an unsupervised deep learning model of the variational autoencoder for MiRNA-disease association prediction (VAEMDA). Through combining the integrated miRNA similarity and the integrated disease similarity with known miRNA-disease associations, respectively, we constructed two spliced matrices. These matrices were applied to train the variational autoencoder (VAE), respectively. The final predicted association scores between miRNAs and diseases were obtained by integrating the scores from the two trained VAE models. Unlike previous models, VAEMDA can avoid noise introduced by the random selection of negative samples and reveal associations between miRNAs and diseases from the perspective of data distribution. Compared with previous methods, VAEMDA obtained higher area under the receiver operating characteristics curves (AUCs) of 0.9118, 0.8652, and 0.9091 ± 0.0065 in global leave-one-out cross validation (LOOCV), local LOOCV, and five-fold cross validation, respectively. Further, the AUCs of VAEMDA were 0.8250 and 0.8237 in global leave-one-disease-out cross validation (LODOCV), and local LODOCV, respectively. In three different types of case studies on three important diseases, the results showed that most of the top 50 potentially associated miRNAs were verified by databases and the literature.
最近,miRNA(microRNAs)在疾病的发生、发展、诊断和治疗中的重要作用引起了研究人员的广泛关注。在这项研究中,我们提出了一种用于 miRNA-疾病关联预测的无监督深度学习模型——变分自动编码器(VAEMDA)。通过分别将整合的 miRNA 相似性和整合的疾病相似性与已知的 miRNA-疾病关联相结合,我们构建了两个拼接矩阵。这两个矩阵分别用于训练变分自动编码器(VAE)。最后,通过整合两个训练好的 VAE 模型的得分,得到 miRNA 和疾病之间的最终预测关联得分。与之前的模型不同,VAEMDA 可以避免随机选择负样本带来的噪声,并从数据分布的角度揭示 miRNA 和疾病之间的关联。与之前的方法相比,VAEMDA 在全局留一交叉验证(LOOCV)、局部 LOOCV 和五折交叉验证中获得了更高的接收者操作特征曲线(ROC)下面积(AUC),分别为 0.9118、0.8652 和 0.9091±0.0065。此外,VAEMDA 在全局留一疾病交叉验证(LODOCV)和局部 LODOCV 中的 AUC 分别为 0.8250 和 0.8237。在三种重要疾病的三种不同类型的案例研究中,结果表明,前 50 个潜在关联 miRNA 中的大多数都被数据库和文献所验证。