Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland.
Metab Eng. 2020 Jan;57:96-109. doi: 10.1016/j.ymben.2019.09.002. Epub 2019 Sep 3.
Microbial biosensors are used to detect the presence of compounds provided externally or produced internally. The latter case is commonly constrained by the need to screen a large library of enzyme or pathway variants to identify those that can efficiently generate the desired compound. To address this limitation, we suggest the use of metabolic sensor strains which can grow only if the relevant compound is present and thus replace screening with direct selection. We used a computational platform to design metabolic sensor strains with varying dependencies on a specific compound. Our method systematically explores combinations of gene deletions and identifies how the growth requirement for a compound changes with the media composition. We demonstrate this approach by constructing a set of E. coli glycerate sensor strains. In each of these strains a different set of enzymes is disrupted such that central metabolism is effectively dissected into multiple segments, each requiring a dedicated carbon source. We find an almost perfect match between the predicted and experimental dependence on glycerate and show that the strains can be used to accurately detect glycerate concentrations across two orders of magnitude. Apart from demonstrating the potential application of metabolic sensor strains, our work reveals key phenomena in central metabolism, including spontaneous degradation of central metabolites and the importance of metabolic sinks for balancing small metabolic networks.
微生物生物传感器用于检测外部提供或内部产生的化合物的存在。在后一种情况下,通常受到需要筛选大量酶或途径变体文库的限制,以鉴定那些能够有效生成所需化合物的变体。为了解决这一限制,我们建议使用代谢传感器菌株,只有在相关化合物存在的情况下才能生长,从而用直接选择代替筛选。我们使用计算平台来设计对特定化合物具有不同依赖性的代谢传感器菌株。我们的方法系统地探索了基因缺失的组合,并确定了化合物的生长需求如何随培养基成分而变化。我们通过构建一组大肠杆菌甘油酸传感器菌株来证明这种方法。在这些菌株中的每一个中,破坏了不同的一组酶,从而有效地将中心代谢物分割成多个片段,每个片段都需要专门的碳源。我们发现甘油酸的预测和实验依赖性几乎完全匹配,并表明这些菌株可用于准确检测甘油酸浓度的两个数量级。除了展示代谢传感器菌株的潜在应用外,我们的工作还揭示了中心代谢中的关键现象,包括中心代谢物的自发降解以及代谢汇对于平衡小代谢网络的重要性。