Suppr超能文献

基于注意力机制的交通预测的局部时空关系发现模型。

Local spatial and temporal relation discovery model based on attention mechanism for traffic forecasting.

机构信息

Shanghai Key Laboratory of Navigation and Location-Based Services, Shanghai JiaoTong University, Shanghai, China.

出版信息

Neural Netw. 2024 Aug;176:106365. doi: 10.1016/j.neunet.2024.106365. Epub 2024 May 6.

Abstract

Recognizing the evolution pattern of traffic condition and making accurate prediction play a vital role in intelligent transportation systems (ITS). With the massive increase of available traffic data, deep learning-based models have attracted considerable attention for their impressive performance in traffic forecasting. However, the majority of existing approaches neglect to model of asynchronously dynamic spatio-temporal correlation and fail to consider the impact of historical traffic data on future condition. Additionally, the attribute of deep learning method presents challenges in interpreting the explicit spatiotemporal relationships. In order to enhance the accuracy of traffic prediction as well as extract comprehensive and explainable spatial-temporal relevance in traffic networks, we propose a novel attention-based local spatial and temporal relation discovery (ALSTRD) model. Our model firstly implements feature representation learning to effectively express latent input traffic information. Then, a local attention mechanism structure is established to model asynchronous dependencies of historical input data. Finally, another attention network and the Pearson Correlation Coefficient method are introduced to extract the elaborate influence of the historical traffic condition of neighboring roads on the future condition of the target road. The experiment results on several datasets demonstrate that our model achieves significant improvements in prediction accuracy compared to other baseline methods, which can be attributed to its ability to extract the fine-grained correlation among historical traffic data and capture the dynamic association between past and future data. In addition, the incorporation of attention mechanism and Pearson Correlation Coefficient promotes the model's ability to elucidate spatiotemporal correlations among traffic data, thereby providing a more robust explanation.

摘要

识别交通状况的演变模式并进行准确预测,在智能交通系统(ITS)中起着至关重要的作用。随着可用交通数据的大量增加,基于深度学习的模型因其在交通预测方面的出色表现而引起了广泛关注。然而,现有的大多数方法都忽略了异步动态时空相关性的建模,并且没有考虑历史交通数据对未来状态的影响。此外,深度学习方法的属性在解释明确的时空关系方面存在挑战。为了提高交通预测的准确性,并提取交通网络中全面且可解释的时空相关性,我们提出了一种新颖的基于注意力的局部时空关系发现(ALSTRD)模型。我们的模型首先实现特征表示学习,以有效地表达潜在的输入交通信息。然后,建立局部注意力机制结构来对历史输入数据的异步依赖性进行建模。最后,引入另一个注意力网络和 Pearson 相关系数方法,以提取相邻道路的历史交通状况对目标道路未来状况的精细影响。在几个数据集上的实验结果表明,与其他基线方法相比,我们的模型在预测精度方面取得了显著的提高,这归因于其提取历史交通数据之间细粒度相关性以及捕获过去和未来数据之间动态关联的能力。此外,注意力机制和 Pearson 相关系数的融合提高了模型阐明交通数据之间时空相关性的能力,从而提供了更强大的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验