García-Miranda Ferrari Alejandro, Foster Christopher W, Brownson Dale A C, Whitehead Kathryn A, Banks Craig E
Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
Sci Rep. 2019 Sep 6;9(1):12814. doi: 10.1038/s41598-019-48022-6.
The origin of electron transfer at Chemical Vapour Deposition (CVD) grown monolayer graphene using a polymer-free transfer methodology is explored through the selective electrodeposition of Molybdenum (di)oxide (MoO). The electrochemical decoration of CVD monolayer graphene with MoO is shown to originate from the edge plane like- sites/defects. Edge plane decoration of MoO nanowires upon monolayer graphene is observed via electrochemical deposition over short time periods only (ca. -0.6 V for 1 second (vs. Ag/AgCl)). At more electrochemically negative potentials (ca. -1.0 V) or longer deposition times, a large MoO film is created/deposited on the graphene sheet, originating and expanding from the original nucleation points at edge plane like- sites/defects/wrinkles. Nanowire fabrication along the edge plane like- sites/defects of graphene is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman Spectroscopy. Monitoring the electrochemical response towards [Ru(NH)] and comparing the heterogeneous electron transfer (HET) kinetics at CVD grown monolayer graphene prior and post nanowire fabrication reveals key understandings into the fundamental electrochemical properties of carbon materials. The HET kinetics ([Formula: see text]) at MoO nanowire decorated monolayer graphene sheets, when edge plane like- sites/defects have been coated/blocked with MoO, are significantly reduced in comparison to the unmodified graphene alternative. Interestingly, MoO nucleation originates on the edge plane like- sites/defects of the graphene sheets, where the basal plane sites remain unaltered until the available edge plane like- sites/defects have been fully utilised; after which MoO deposition propagates towards and onto the basal planes, eventually covering the entire surface of the monolayer graphene surface. In such instances, there is no longer an observable electrochemical response. This work demonstrates the distinct electron transfer properties of edge and basal plane sites on CVD grown monolayer graphene, inferring favourable electrochemical reactivity at edge plane like- sites/defects and clarifying the origin of graphene electro-activity.
通过二氧化钼(MoO)的选择性电沉积,探索了采用无聚合物转移方法在化学气相沉积(CVD)生长的单层石墨烯上进行电子转移的起源。结果表明,用MoO对CVD单层石墨烯进行电化学修饰起源于类似边缘平面的位点/缺陷。仅在短时间内(约-0.6 V,持续1秒,相对于Ag/AgCl)通过电化学沉积观察到单层石墨烯上MoO纳米线的边缘平面修饰。在更负的电化学电位(约-1.0 V)或更长的沉积时间下,会在石墨烯片上形成/沉积一层大的MoO膜,该膜从类似边缘平面的位点/缺陷/褶皱处的原始成核点开始并扩展。通过循环伏安法、扫描电子显微镜(SEM)、原子力显微镜(AFM)和拉曼光谱证实了沿着石墨烯类似边缘平面的位点/缺陷制备纳米线。监测对[Ru(NH)]的电化学响应,并比较纳米线制备前后CVD生长的单层石墨烯上的异质电子转移(HET)动力学,揭示了对碳材料基本电化学性质的关键理解。与未修饰的石墨烯相比,当类似边缘平面的位点/缺陷被MoO覆盖/阻断时,MoO纳米线修饰的单层石墨烯片上的HET动力学([公式:见原文])显著降低。有趣的是,MoO成核起源于石墨烯片的类似边缘平面的位点/缺陷,在可用的类似边缘平面的位点/缺陷被充分利用之前,基面位点保持不变;在此之后,MoO沉积向基面传播并覆盖在基面上,最终覆盖单层石墨烯表面的整个表面。在这种情况下,不再有可观察到的电化学响应。这项工作展示了CVD生长的单层石墨烯上边缘和基面位点不同的电子转移特性,推断出类似边缘平面的位点/缺陷处具有良好的电化学反应性,并阐明了石墨烯电活性的起源。