Suppr超能文献

量子退火在护士排班问题中的应用。

Application of Quantum Annealing to Nurse Scheduling Problem.

机构信息

Department of Physics, Osaka University, Toyonaka, Osaka, 5600043, Japan.

Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37916, USA.

出版信息

Sci Rep. 2019 Sep 6;9(1):12837. doi: 10.1038/s41598-019-49172-3.

Abstract

Quantum annealing is a promising heuristic method to solve combinatorial optimization problems, and efforts to quantify performance on real-world problems provide insights into how this approach may be best used in practice. We investigate the empirical performance of quantum annealing to solve the Nurse Scheduling Problem (NSP) with hard constraints using the D-Wave 2000Q quantum annealing device. NSP seeks the optimal assignment for a set of nurses to shifts under an accompanying set of constraints on schedule and personnel. After reducing NSP to a novel Ising-type Hamiltonian, we evaluate the solution quality obtained from the D-Wave 2000Q against the constraint requirements as well as the diversity of solutions. For the test problems explored here, our results indicate that quantum annealing recovers satisfying solutions for NSP and suggests the heuristic method is potentially achievable for practical use. Moreover, we observe that solution quality can be greatly improved through the use of reverse annealing, in which it is possible to refine returned results by using the annealing process a second time. We compare the performance of NSP using both forward and reverse annealing methods and describe how this approach might be used in practice.

摘要

量子退火是一种很有前途的启发式方法,可用于解决组合优化问题,而对实际问题性能的定量研究则为如何在实践中最好地利用这种方法提供了深入的了解。我们使用 D-Wave 2000Q 量子退火设备研究了量子退火在解决具有硬约束的护士排班问题(NSP)方面的经验性能。NSP 在一组时间表和人员约束下,为一组护士寻找最佳的班次分配。在将 NSP 简化为一种新的伊辛型哈密顿量之后,我们评估了 D-Wave 2000Q 获得的解决方案质量是否符合约束要求以及解决方案的多样性。对于这里探索的测试问题,我们的结果表明,量子退火可以为 NSP 恢复令人满意的解决方案,并表明启发式方法在实际应用中是可行的。此外,我们观察到,通过使用反向退火,可以大大提高解决方案的质量,在反向退火中,可以通过第二次使用退火过程来优化返回的结果。我们比较了使用正向和反向退火方法的 NSP 性能,并描述了如何在实践中使用这种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d96/6731278/5ab37d3e8e97/41598_2019_49172_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验