Suppr超能文献

针对最大割问题对一种启发式弗洛凯绝热算法进行基准测试。

Benchmarking a heuristic Floquet adiabatic algorithm for the Max-Cut problem.

作者信息

Granet Etienne, Dreyer Henrik

机构信息

Quantinuum, Leopoldstrasse 180, 80804, Munich, Germany.

出版信息

Sci Rep. 2025 Aug 30;15(1):31983. doi: 10.1038/s41598-025-13923-2.

Abstract

According to the adiabatic theorem of quantum mechanics, a system initially in the ground state of a Hamiltonian remains in the ground state if one slowly changes the Hamiltonian. This can be used in principle to solve hard problems on quantum computers. Generically, however, implementation of this Hamiltonian dynamics on digital quantum computers requires scaling Trotter step size with system size and simulation time, which incurs a large gate count. In this work, we argue that for classical optimization problems, the adiabatic evolution can be performed with a fixed, finite Trotter step. This "Floquet adiabatic evolution" reduces by several orders of magnitude the gate count compared to the usual, continuous-time adiabatic evolution. We give numerical evidence using matrix-product-state simulations that it can optimally solve the Max-Cut problem on 3-regular graphs in a large number of instances, with surprisingly low runtime, even with bond dimensions as low as [Formula: see text]. Extrapolating our numerical results, we estimate the resources needed for a quantum computer to compete with classical exact or approximate solvers for this specific problem.

摘要

根据量子力学的绝热定理,如果缓慢改变哈密顿量,一个最初处于哈密顿量基态的系统将保持在基态。原则上,这可用于解决量子计算机上的难题。然而,一般来说,在数字量子计算机上实现这种哈密顿动力学需要根据系统大小和模拟时间来缩放 Trotter 步长,这会导致大量的门操作数。在这项工作中,我们认为对于经典优化问题,绝热演化可以用固定的有限 Trotter 步长来执行。这种“弗洛凯绝热演化”与通常的连续时间绝热演化相比,将门操作数减少了几个数量级。我们使用矩阵乘积态模拟给出了数值证据,表明它能够在大量实例中以惊人的低运行时间最优地解决 3 - 正则图上的最大割问题,即使键维度低至[公式:见原文]。通过外推我们的数值结果,我们估计了量子计算机与该特定问题的经典精确或近似求解器竞争所需的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cd/12398499/9d73d6e2dfb3/41598_2025_13923_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验