Suppr超能文献

用于血管内导航的柔性器械的光纤形状传感。

Fiber optical shape sensing of flexible instruments for endovascular navigation.

机构信息

Fraunhofer MEVIS, Institute for Digital Medicine, Lübeck, Maria-Goeppert-Straße 3, 23562, Lübeck, Germany.

Medical Laser Center Lübeck GmbH, Peter-Monnik-Weg 4, 23562, Lübeck, Germany.

出版信息

Int J Comput Assist Radiol Surg. 2019 Dec;14(12):2137-2145. doi: 10.1007/s11548-019-02059-0. Epub 2019 Sep 6.

Abstract

PURPOSE

Endovascular aortic repair procedures are currently conducted with 2D fluoroscopy imaging. Tracking systems based on fiber Bragg gratings are an emerging technology for the navigation of minimally invasive instruments which can reduce the X-ray exposure and the used contrast agent. Shape sensing of flexible structures is challenging and includes many calculations steps which are prone to different errors. To reduce this errors, we present an optimized shape sensing model.

METHODS

We analyzed for every step of the shape sensing process, which errors can occur, how the error affects the shape and how it can be compensated or minimized. Experiments were done with one multicore fiber system with 38 cm sensing length, and the effects of different methods and parameters were analyzed. Furthermore, we compared 3D shape reconstructions with the segmented shape of the corresponding CT scans of the fiber to evaluate the accuracy of our optimized shape sensing model. Finally, we tested our model in a realistic endovascular scenario by using a 3D printed vessel system created from patient data.

RESULTS

Depending on the complexity of the shape, we reached an average error of 0.35-1.15 mm and maximal error of 0.75-7.53 mm over the whole 38 cm sensing length. In the endovascular scenario, we obtained an average and maximal error of 1.13 mm and 2.11 mm, respectively.

CONCLUSION

The accuracies of the 3D shape sensing model are promising, and we plan to combine the shape sensing based on fiber Bragg gratings with the position and orientation of an electromagnetic tracking to obtain the located catheter shape.

摘要

目的

目前,血管内主动脉修复手术是在二维透视成像下进行的。基于光纤布拉格光栅的跟踪系统是一种新兴的微创器械导航技术,可减少 X 射线辐射和使用的造影剂。柔性结构的形状感测具有挑战性,包括许多计算步骤,容易出现各种误差。为了减少这些误差,我们提出了一种优化的形状感测模型。

方法

我们分析了形状感测过程中的每一步,哪些误差可能发生,误差如何影响形状,以及如何补偿或最小化误差。实验使用了一个带有 38cm 感应长度的多芯光纤系统进行,分析了不同方法和参数的效果。此外,我们还将 3D 形状重建与纤维相应 CT 扫描的分段形状进行了比较,以评估我们优化的形状感测模型的准确性。最后,我们通过使用从患者数据创建的 3D 打印血管系统在现实的血管内场景中测试了我们的模型。

结果

根据形状的复杂性,我们在整个 38cm 的感应长度上达到了 0.35-1.15mm 的平均误差和 0.75-7.53mm 的最大误差。在血管内场景中,我们分别获得了 1.13mm 和 2.11mm 的平均误差和最大误差。

结论

3D 形状感测模型的准确性很有前途,我们计划将基于光纤布拉格光栅的形状感测与电磁跟踪的位置和方向相结合,以获得定位的导管形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a65/6858473/5d260b7d7494/11548_2019_2059_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验