Suppr超能文献

动态规划和新生儿会厌下腔光学相干断层扫描图像的自动分割:实现管理会厌下狭窄的有效诊断。

Dynamic programming and automated segmentation of optical coherence tomography images of the neonatal subglottis: enabling efficient diagnostics to manage subglottic stenosis.

机构信息

University of California Irvine, Beckman Laser Institute, Irvine, California, United States.

University of California Irvine, Department of Otolaryngology-Head and Neck Surgery, Orange, Califor, United States.

出版信息

J Biomed Opt. 2019 Sep;24(9):1-8. doi: 10.1117/1.JBO.24.9.096001.

Abstract

Subglottic stenosis (SGS) is a challenging disease to diagnose in neonates. Long-range optical coherence tomography (OCT) is an optical imaging modality that has been described to image the subglottis in intubated neonates. A major challenge associated with OCT imaging is the lack of an automated method for image analysis and micrometry of large volumes of data that are acquired with each airway scan (1 to 2 Gb). We developed a tissue segmentation algorithm that identifies, measures, and conducts image analysis on tissue layers within the mucosa and submucosa and compared these automated tissue measurements with manual tracings. We noted small but statistically significant differences in thickness measurements of the mucosa and submucosa layers in the larynx (p  <  0.001), subglottis (p  =  0.015), and trachea (p  =  0.012). The automated algorithm was also shown to be over 8 times faster than the manual approach. Moderate Pearson correlations were found between different tissue texture parameters and the patient’s gestational age at birth, age in days, duration of intubation, and differences with age (mean age 17 days). Automated OCT data analysis is necessary in the diagnosis and monitoring of SGS, as it can provide vital information about the airway in real time and aid clinicians in making management decisions for intubated neonates.

摘要

声门下狭窄(SGS)是新生儿诊断的一项具有挑战性的疾病。长程光学相干断层扫描(OCT)是一种已被描述用于对插管新生儿声门下成像的光学成像方式。与 OCT 成像相关的一个主要挑战是缺乏一种自动化的方法来分析图像和对每个气道扫描(1 到 2GB)获取的大量数据进行微测量。我们开发了一种组织分割算法,该算法可以识别、测量和分析黏膜和黏膜下层内的组织层,并将这些自动组织测量与手动追踪进行比较。我们注意到,在喉部(p  <  0.001)、声门下(p  =  0.015)和气管(p  =  0.012)中,黏膜和黏膜下层的厚度测量值存在较小但具有统计学意义的差异。自动算法也比手动方法快 8 倍以上。在不同的组织纹理参数与患者出生时的胎龄、出生后天数、插管持续时间以及与年龄的差异(平均年龄 17 天)之间发现了中度 Pearson 相关性。在 SGS 的诊断和监测中,OCT 数据分析是必要的,因为它可以实时提供有关气道的重要信息,并帮助临床医生为插管新生儿做出管理决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2797/6732661/e13c2f8f4405/JBO-024-096001-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验