Suppr超能文献

基于生理和 iTRAQ 的蛋白质组学分析揭示了高浓度 CO 缓解黄瓜(Cucumis sativus L.)幼苗干旱胁迫的机制。

Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings.

机构信息

College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Bei'jing, 100081, China.

College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.

出版信息

Plant Physiol Biochem. 2019 Oct;143:142-153. doi: 10.1016/j.plaphy.2019.08.025. Epub 2019 Aug 29.

Abstract

Carbon dioxide is one of the most important anthropogenic greenhouse gases. We previously confirmed that elevated [CO] alleviated the negative consequences of drought stress to cucumber seedlings, but the physiological mechanism remains unknown. We investigated the morphological and physiological characteristics as well as iTRAQ-based proteomics analyses in this study under different combinations [CO] (400 and (800 ± 20) μmol·mol) and water conditions (no, moderate and severe drought stress simulated by polyethylene glycol 6000). The results showed: (1) elevated [CO] significantly increased plant height, stem diameter, leaf area and relative water content (RWC) under drought stress; (2) drought stress significantly increased J and K peaks of the chlorophyll a fluorescence transient, indicating the damage of photosynthetic electron transport chain, while elevated [CO] decreased them especially under moderate drought condition; (3) iTRAQ-based proteomics analyses indicated that elevated [CO] increased the abundance of psbJ and the PSI reaction center subunit VI-2 in seedlings exposed to moderate drought stress; (4) the abundance of uroporphyrinogen decarboxylase 2 and tetrapyrrole-binding protein decreased in response to elevated [CO] under severe drought condition; (5) elevated [CO] regulated the expression of chloroplast proteins such as those related to stress and defense response, redox homeostasis, metabolic pathways. In conclusion, elevated [CO] enhanced the efficiency of photosynthetic electron transport, limited the absorption of excess light energy, enhanced the ability of antioxidant and osmotic adjustment, and alleviated the accumulation of toxic substances under drought stress. These findings provide new clues for understanding the molecular basis of elevated [CO] alleviated plant drought stress.

摘要

二氧化碳是最重要的人为温室气体之一。我们之前已经证实,高浓度的[CO]可以减轻黄瓜幼苗干旱胁迫的负面影响,但生理机制尚不清楚。本研究在不同[CO](400 和(800±20)μmol·mol)和水分条件(无、中度和重度干旱胁迫模拟用聚乙二醇 6000)下,对形态和生理特征以及基于 iTRAQ 的蛋白质组学分析进行了研究。结果表明:(1)高浓度[CO]在干旱胁迫下显著增加了株高、茎径、叶面积和相对含水量(RWC);(2)干旱胁迫显著增加了叶绿素 a 荧光瞬变的 J 和 K 峰,表明光合电子传递链受到了损伤,而高浓度[CO]降低了这些峰,尤其是在中度干旱条件下;(3)基于 iTRAQ 的蛋白质组学分析表明,高浓度[CO]增加了中等干旱胁迫下幼苗中 psbJ 和 PSI 反应中心亚基 VI-2 的丰度;(4)在严重干旱条件下,高浓度[CO]导致尿卟啉原脱羧酶 2 和四吡咯结合蛋白的丰度降低;(5)高浓度[CO]调节了与胁迫和防御反应、氧化还原稳态、代谢途径相关的叶绿体蛋白的表达。总之,高浓度[CO]提高了光合电子传递的效率,限制了过量光能的吸收,增强了抗氧化和渗透调节的能力,减轻了干旱胁迫下有毒物质的积累。这些发现为理解高浓度[CO]缓解植物干旱胁迫的分子基础提供了新的线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验