Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
Infect Genet Evol. 2019 Nov;75:104033. doi: 10.1016/j.meegid.2019.104033. Epub 2019 Sep 5.
Microsporidia are composed of a highly diverse group of single-celled, obligate intracellular fungi that colonize an extremely wide range of other eukaryotes, among which Enterocytozoon bieneusi is the most common species responsible for human microsporidiasis. Genotyping of E. bieneusi based on sequence analysis of the ribosomal internal transcribed spacer (ITS) has recognized ~500 genotypes in humans and a great variety of other mammals and birds. Those genotypes vary in genetic or hereditary characteristics and form 11 genetic groups in phylogenetic analysis of the ITS nucleotide sequences. Some of genotypes in Group 1 (e.g., D, EbpC, and type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) have broad host and geographic ranges, constituting a major risk for zoonotic or cross-species transmission. By contrast, host specificity seems common in Group 3 to Group 11 whose members appear well adapted to specific hosts and thus would have minimal or unknown effects on public health. Multilocus sequence typing using the ITS, three microsatellites MS1, MS3, and MS7, and one minisatellite MS4, and population genetic analysis of Group 1 isolates reveal the occurrence of clonality, potential host adaptation, and population differentiation of E. bieneusi in various hosts. Nonetheless, it is still highly desirable to explore novel genetic markers with enough polymorphisms, to type complex or unstructured E. bieneusi populations of various host species and geographic origins, notably those belonging to Group 2 to Group 11. Additional population genetic and comparative genomic data are needed to elucidate the actual extent of host specificity in E. bieneusi and its potential impacts on zoonotic or interspecies transmission of microsporidiasis.
微孢子虫是由一组高度多样化的单细胞、专性细胞内真菌组成,它们定植于极其广泛的其他真核生物中,其中肠微孢子虫是最常见的引起人类微孢子虫病的物种。基于核糖体内部转录间隔区(ITS)序列分析对肠微孢子虫进行基因分型,已在人类和多种其他哺乳动物和鸟类中识别出约 500 种基因型。这些基因型在遗传或遗传特征上存在差异,并在 ITS 核苷酸序列的系统发育分析中形成 11 个遗传群。一些 1 组(例如,D、EbpC 和 IV 型)和 2 组(例如,BEB4、BEB6、I 和 J)的基因型具有广泛的宿主和地理范围,构成了人畜共患病或跨物种传播的主要风险。相比之下,宿主特异性似乎在 3 组到 11 组中很常见,其成员似乎很好地适应于特定宿主,因此对公共卫生的影响最小或未知。使用 ITS、3 个微卫星 MS1、MS3 和 MS7 以及 1 个微卫星 MS4 的多位点序列分型和 1 组分离株的群体遗传分析表明肠微孢子虫存在克隆性、潜在的宿主适应性和种群分化。尽管如此,探索具有足够多态性的新型遗传标记,对各种宿主来源的复杂或非结构化肠微孢子虫群体进行分型仍然是非常有必要的,特别是那些属于 2 组到 11 组的群体。需要额外的群体遗传和比较基因组数据来阐明肠微孢子虫的实际宿主特异性程度及其对微孢子虫病人畜共患病或种间传播的潜在影响。