Suppr超能文献

基于障碍函数的不确定严格反馈系统的自适应控制在预定神经网络逼近集内。

Barrier Function-Based Adaptive Control for Uncertain Strict-Feedback Systems Within Predefined Neural Network Approximation Sets.

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):2942-2954. doi: 10.1109/TNNLS.2019.2934403. Epub 2019 Sep 4.

Abstract

In this article, a globally stable adaptive control strategy for uncertain strict-feedback systems is proposed within predefined neural network (NN) approximation sets, despite the presence of unknown system nonlinearities. In contrast to the conventional adaptive NN control results in the literature, a primary benefit of the developed approach is that the barrier Lyapunov function is employed to predefine the compact set for maintaining the validity of NN approximation at each step, thus accomplishing the global boundedness of all the closed-loop signals. Simulation results are performed to clarify the effectiveness of the proposed methodology.

摘要

本文针对具有未知系统非线性的不确定严格反馈系统,在预先定义的神经网络(NN)逼近集内提出了一种全局稳定的自适应控制策略。与文献中的传统自适应 NN 控制结果相比,所提出方法的一个主要优点是使用障碍李雅普诺夫函数来预先定义保持 NN 逼近在每个步骤都有效的紧凑集,从而实现所有闭环信号的全局有界性。通过仿真结果验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验