Suppr超能文献

基于 Titania 纳米管的蛋白质递药系统抑制颅缝早闭 Crouzon 模型中的颅盖骨再生。

Titania nanotube-based protein delivery system to inhibit cranial bone regeneration in Crouzon model of craniosynostosis.

机构信息

Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia.

School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.

出版信息

Int J Nanomedicine. 2019 Aug 6;14:6313-6324. doi: 10.2147/IJN.S202090. eCollection 2019.

Abstract

BACKGROUND

Craniosynostosis is a developmental disorder characterized by the premature fusion of skull sutures, necessitating repetitive, high-risk neurosurgical interventions throughout infancy. This study used protein-releasing Titania nanotubular implant (TNT/Ti) loaded with glypican 3 (GPC3) in the cranial critical-sized defects (CSDs) in Crouzon murine model ( knock-in mutation) to address a key challenge of delaying post-operative bone regeneration in craniosynostosis.

MATERIALS AND METHODS

A 3 mm wide circular CSD was created in two murine models of Crouzon syndrome: (i) surgical control (CSDs without TNT/Ti or any protein, n=6) and (ii) experimental groups with TNT/Ti loaded with GPC3, further subdivided into the presence or absence of chitosan coating (on nanotubes) (n=12 in each group). The bone volume percentage in CSDs was assessed 90 days post-implantation using micro-computed tomography (micro-CT) and histological analysis.

RESULTS

Nano-implants retrieved after 90 days post-operatively depicted well-adhered, hexagonally arranged, and densely packed nanotubes with average diameter of 120±10 nm. The nanotubular architecture was generally well-preserved. Compared with the control bone volume percentage data (without GPC3), GPC3-loaded TNT/Ti without chitosan coating displayed a significantly lower volume percent in cranial CSDs (<0.001). Histological assessment showed relatively less bone regeneration (healing) in GPC3-loaded CSDs than control CSDs.

CONCLUSION

The finding of inhibition of cranial bone regeneration by GPC3-loaded TNT/Ti in vivo is an important advance in the novel field of minimally-invasive craniosynostosis therapy and holds the prospect of altering the whole paradigm of treatment for affected children. Future animal studies on a larger sample are indicated to refine the dosage and duration of drug delivery across different ages and both sexes with the view to undertake human clinical trials.

摘要

背景

颅缝早闭是一种发育障碍,表现为颅骨缝线过早融合,导致婴儿期需要反复进行高风险的神经外科干预。本研究在 Crouzon 鼠模型(嵌合突变)的颅临界尺寸缺损(CSD)中使用载有人聚糖 3(GPC3)的释放蛋白的 Titania 纳米管状植入物(TNT/Ti)来解决颅缝早闭中延迟术后骨再生的关键挑战。

材料和方法

在两种 Crouzon 综合征的鼠模型中创建了 3 毫米宽的圆形 CSD:(i)手术对照(无 TNT/Ti 或任何蛋白的 CSDs,n=6)和(ii)载有 GPC3 的 TNT/Ti 实验组,进一步分为存在或不存在壳聚糖涂层(在纳米管上)(每组 12 只)。使用微计算机断层扫描(micro-CT)和组织学分析在植入后 90 天评估 CSD 中的骨体积百分比。

结果

术后 90 天回收的纳米植入物显示出良好附着的、六边形排列的、紧密堆积的纳米管,平均直径为 120±10nm。纳米管结构通常得到很好的保留。与对照骨体积百分比数据(无 GPC3)相比,无壳聚糖涂层的载有 GPC3 的 TNT/Ti 在颅 CSD 中的体积百分比明显较低(<0.001)。组织学评估显示,载有 GPC3 的 CSD 中的骨再生(愈合)相对较少,而对照 CSD 则较多。

结论

体内载有人聚糖 3 的 TNT/Ti 抑制颅骨再生的发现是微创颅缝早闭治疗这一新兴领域的重要进展,有望改变受影响儿童的整个治疗模式。需要进行更大样本的未来动物研究,以优化不同年龄和性别在不同时间点的药物输送剂量和持续时间,以期进行人体临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fe/6690047/0e2e6c81689c/IJN-14-6313-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验