Suppr超能文献

用最小成本控制决策误差:序贯概率比 t 检验。

Controlling decision errors with minimal costs: The sequential probability ratio t test.

机构信息

Department of Psychology, School of Social Sciences, University of Mannheim.

出版信息

Psychol Methods. 2020 Apr;25(2):206-226. doi: 10.1037/met0000234. Epub 2019 Sep 9.

Abstract

For several years, the public debate in psychological science has been dominated by what is referred to as the reproducibility crisis. This crisis has, inter alia, drawn attention to the need for proper control of statistical decision errors in testing psychological hypotheses. However, conventional methods of error probability control often require fairly large samples. Sequential statistical tests provide an attractive alternative: They can be applied repeatedly during the sampling process and terminate whenever there is sufficient evidence in the data for one of the hypotheses of interest. Thus, sequential tests may substantially reduce the required sample size without compromising predefined error probabilities. Herein, we discuss the most efficient sequential design, the sequential probability ratio test (SPRT), and show how it is easily implemented for a 2-sample t test using standard statistical software. We demonstrate, by means of simulations, that the SPRT not only reliably controls error probabilities but also typically requires substantially smaller samples than standard t tests and other common sequential designs. Moreover, we investigate the robustness of the SPRT against violations of its assumptions. Finally, we illustrate the sequential t test by applying it to an empirical example and provide recommendations on how psychologists can employ it in their own research to benefit from its desirable properties. (PsycINFO Database Record (c) 2020 APA, all rights reserved).

摘要

多年来,心理学科学界的公众辩论一直以所谓的可重复性危机为主导。这场危机特别引起了人们对在测试心理假设时正确控制统计决策错误的需要。然而,传统的错误概率控制方法通常需要相当大的样本量。序贯统计检验提供了一个有吸引力的替代方法:它们可以在抽样过程中反复应用,并在数据中出现足够的证据支持感兴趣的假设之一时终止。因此,序贯检验可以在不影响预定义错误概率的情况下大大减少所需的样本量。本文讨论了最有效的序贯设计,即序贯概率比检验(SPRT),并展示了如何使用标准统计软件轻松地将其应用于 2 样本 t 检验。我们通过模拟表明,SPRT 不仅可靠地控制错误概率,而且通常比标准 t 检验和其他常见的序贯设计需要的样本量小得多。此外,我们研究了 SPRT 对违反其假设的稳健性。最后,我们通过将序贯 t 检验应用于一个实证示例来说明它,并就心理学家如何在自己的研究中使用它以受益于其理想特性提供建议。(PsycINFO 数据库记录(c)2020 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验