Suppr超能文献

知情贝叶斯生存分析。

Informed Bayesian survival analysis.

机构信息

Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.

Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic.

出版信息

BMC Med Res Methodol. 2022 Sep 10;22(1):238. doi: 10.1186/s12874-022-01676-9.

Abstract

BACKGROUND

We provide an overview of Bayesian estimation, hypothesis testing, and model-averaging and illustrate how they benefit parametric survival analysis. We contrast the Bayesian framework to the currently dominant frequentist approach and highlight advantages, such as seamless incorporation of historical data, continuous monitoring of evidence, and incorporating uncertainty about the true data generating process.

METHODS

We illustrate the application of the outlined Bayesian approaches on an example data set, retrospective re-analyzing a colon cancer trial. We assess the performance of Bayesian parametric survival analysis and maximum likelihood survival models with AIC/BIC model selection in fixed-n and sequential designs with a simulation study.

RESULTS

In the retrospective re-analysis of the example data set, the Bayesian framework provided evidence for the absence of a positive treatment effect of adding Cetuximab to FOLFOX6 regimen on disease-free survival in patients with resected stage III colon cancer. Furthermore, the Bayesian sequential analysis would have terminated the trial 10.3 months earlier than the standard frequentist analysis. In a simulation study with sequential designs, the Bayesian framework on average reached a decision in almost half the time required by the frequentist counterparts, while maintaining the same power, and an appropriate false-positive rate. Under model misspecification, the Bayesian framework resulted in higher false-negative rate compared to the frequentist counterparts, which resulted in a higher proportion of undecided trials. In fixed-n designs, the Bayesian framework showed slightly higher power, slightly elevated error rates, and lower bias and RMSE when estimating treatment effects in small samples. We found no noticeable differences for survival predictions. We have made the analytic approach readily available to other researchers in the RoBSA R package.

CONCLUSIONS

The outlined Bayesian framework provides several benefits when applied to parametric survival analyses. It uses data more efficiently, is capable of considerably shortening the length of clinical trials, and provides a richer set of inferences.

摘要

背景

我们提供了贝叶斯估计、假设检验和模型平均的概述,并说明了它们如何使参数生存分析受益。我们将贝叶斯框架与当前占主导地位的频率方法进行对比,并强调了一些优势,例如无缝纳入历史数据、持续监测证据以及纳入对真实数据生成过程的不确定性。

方法

我们通过一个实例数据集,对回顾性重新分析结肠癌试验来说明所概述的贝叶斯方法的应用。我们通过模拟研究评估了贝叶斯参数生存分析和最大似然生存模型在固定样本量和序贯设计中的表现,使用 AIC/BIC 模型选择进行评估。

结果

在实例数据集的回顾性重新分析中,贝叶斯框架提供了证据,表明在接受过手术治疗的 III 期结肠癌患者中,添加 Cetuximab 到 FOLFOX6 方案中并不能改善无病生存率。此外,贝叶斯序贯分析将比标准频率分析提前 10.3 个月终止试验。在具有序贯设计的模拟研究中,贝叶斯框架平均在接近频率框架所需时间的一半内做出决策,同时保持相同的效力和适当的假阳性率。在模型误设定的情况下,贝叶斯框架导致的假阴性率高于频率框架,导致未决定试验的比例更高。在固定样本量设计中,贝叶斯框架显示出略高的效力、略高的错误率、以及在小样本中估计治疗效果时的更低偏差和 RMSE。我们没有发现生存预测方面有明显差异。我们已经在 RoBSA R 包中为其他研究人员提供了易于使用的分析方法。

结论

当应用于参数生存分析时,所概述的贝叶斯框架提供了一些优势。它更有效地利用数据,能够显著缩短临床试验的长度,并提供更丰富的推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed9/9464410/faa909fecf31/12874_2022_1676_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验