Suppr超能文献

25 至 5°C 温度范围内甲烷驱动微生物燃料电池的性能和微生物生态学。

Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5 °C.

机构信息

Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, USA.

Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA, 90089, USA.

出版信息

Water Res. 2019 Dec 1;166:115036. doi: 10.1016/j.watres.2019.115036. Epub 2019 Sep 3.

Abstract

The effluent of mainstream anaerobic processes is saturated with dissolved methane, representing a lost energy source and potent greenhouse gas emission if left unmanaged. This study investigated the impact of operational temperature on methane-driven microbial fuel cells (MFCs) designed for continuous operation to mitigate dissolved methane emissions in anaerobic effluents. Two bench-scale, single-chamber MFCs were operated sequentially at 25, 20, 15, 10 and 5 °C. Voltage production from both MFCs ranged from approximately 0.463 to 0.512 V over 1 kΩ resistance at temperatures ≥15 °C, but abruptly dropped as temperature decreased to 10 and 5 °C, averaging just 0.156 and 0.190 V for the replicate systems. Dissolved methane removal efficiency remained relatively stable across all operational temperatures, ranging from 53.0% to 63.6%. High-throughput sequencing of 16S rRNA genes and reverse transcription quantitative polymerase chain reaction indicated distinct distribution of methanotrophs (e.g., Methylomonas) and exoelectrogens (e.g., Geobacter) on the cathode and anode, respectively. Spearman's rank correlation suggested that an indirect interaction between methanotrophs and exoelectrogens via fermentative bacteria (e.g., Acetobacterium) may play a role in system function. Notably, diversity of the anode microbial community was positively correlated with both voltage production and Coulombic efficiency, suggesting overall diversity, as opposed to abundance or activity of exoelectrogens, was the primary factor governing performance at varying temperatures.

摘要

主流厌氧工艺的流出物中溶解有甲烷,如果不加管理,这些甲烷会逸出并成为潜在的温室气体排放源,浪费了能源。本研究调查了操作温度对连续运行的甲烷驱动微生物燃料电池(MFC)的影响,旨在减轻厌氧流出物中溶解甲烷的排放。两个台式单室 MFC 分别在 25、20、15、10 和 5°C 下顺序运行。在温度≥15°C 时,两个 MFC 的电压均从大约 0.463 到 0.512V 不等,在电阻为 1kΩ 时产生,但当温度降至 10 和 5°C 时,电压急剧下降,两个系统的平均电压仅为 0.156 和 0.190V。在所有操作温度下,溶解甲烷去除效率均保持相对稳定,范围为 53.0%至 63.6%。16S rRNA 基因高通量测序和反转录定量聚合酶链式反应表明,甲烷氧化菌(例如 Methylomonas)和异化型电子传递菌(例如 Geobacter)分别在阴极和阳极上具有不同的分布。Spearman 秩相关分析表明,甲烷氧化菌和异化型电子传递菌通过发酵细菌(例如 Acetobacterium)之间的间接相互作用可能在系统功能中起作用。值得注意的是,阳极微生物群落的多样性与电压和库仑效率均呈正相关,这表明总体多样性,而不是异化型电子传递菌的丰度或活性,是在不同温度下决定性能的主要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验