Cao Hui, Yan Dong Xue, Li Ao
Department of Mathematics, Shaanxi University of Science and Technology, Xi'an, 710021, P.R. China.
School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China.
Math Biosci Eng. 2019 Jun 28;16(5):5972-5990. doi: 10.3934/mbe.2019299.
In this work, an SIRS model with age structure is proposed for recurrent infectious disease by incorporating temporary immunity and delay. We formulate the model as an abstract non-densely defined Cauchy problem and derive the conditions for the global stability of disease free equilibrium, the local stability of endemic equilibrium, and the existence of Hopf bifurcation. Both non-periodic and periodic behaviors are possible when the disease persists in population, where time delay plays an important role. Numerical examples are provided to illustrate our theoretical results.
在这项工作中,通过纳入暂时免疫和延迟,提出了一个具有年龄结构的SIRS模型用于复发性传染病。我们将该模型表述为一个抽象的非稠密定义柯西问题,并推导了无病平衡点全局稳定性、地方病平衡点局部稳定性以及霍普夫分岔存在性的条件。当疾病在人群中持续存在时,非周期性和周期性行为都是可能的,其中时间延迟起着重要作用。给出了数值例子来说明我们的理论结果。