Okuwa Kento, Inaba Hisashi, Kuniya Toshikazu
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914 Japan.
Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 Japan.
Math Biosci Eng. 2019 Jul 2;16(5):6071-6102. doi: 10.3934/mbe.2019304.
In this paper, we investigate an SIRS epidemic model with chronological age structure in a demographic steady state. Although the age-structured SIRS model is a simple extension of the well-known age-structured SIR epidemic model, we have to develop new technique to deal with problems due to the reversion of susceptibility for recovered individuals. First we give a standard proof for the well-posedness of the normalized age-structured SIRS model. Next we examine existence of endemic steady states by fixed point arguments and bifurcation method, where we introduce the next generation operator and the basic reproduction number R to formulate endemic threshold results. Thirdly we investigate stability of steady states by the bifurcation calculation and the comparison method, and we show existence of a compact attractor and discuss the global behavior based on the population persistence theory. Finally we give some numerical examples and discuss the effect of mass-vaccination on R and the critical coverage of immunization based on the reinfection threshold.
在本文中,我们研究了处于人口统计学稳态且具有按时间顺序排列的年龄结构的SIRS传染病模型。尽管具有年龄结构的SIRS模型是著名的具有年龄结构的SIR传染病模型的简单扩展,但由于康复个体易感性的逆转,我们必须开发新的技术来处理相关问题。首先,我们给出了归一化的具有年龄结构的SIRS模型适定性的标准证明。接下来,我们通过不动点论证和分岔方法研究地方病稳态的存在性,在此过程中我们引入下一代算子和基本再生数(R)来阐述地方病阈值结果。第三,我们通过分岔计算和比较方法研究稳态的稳定性,并且我们证明了一个紧致吸引子的存在性,并基于种群持久性理论讨论全局行为。最后,我们给出一些数值例子,并基于再感染阈值讨论大规模接种疫苗对(R)的影响以及免疫的临界覆盖率。