Wegner Nils, Kotzem Daniel, Wessarges Yvonne, Emminghaus Nicole, Hoff Christian, Tenkamp Jochen, Hermsdorf Jörg, Overmeyer Ludger, Walther Frank
Department of Materials Test Engineering (WPT), TU Dortmund University, Baroper Str. 303, D-44227 Dortmund, Germany.
Materials and Process Department, Laser Zentrum Hannover e.V. (LZH), Hollerithallee 8, D-30419 Hannover, Germany.
Materials (Basel). 2019 Sep 7;12(18):2892. doi: 10.3390/ma12182892.
Laser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.
金属激光粉末床熔融(L-PBF)技术能够制造高度复杂的几何形状,这为医疗领域开辟了新的应用领域,特别是在个性化植入物方面。与传统制造技术相比,L-PBF会产生不同的微观结构,因此也带来了新的挑战。这项工作的主要目的是研究L-PBF工艺的不同制造参数对镁合金WE43的微观结构、工艺诱导孔隙率以及腐蚀疲劳性能的影响,并以钛合金Ti-6Al-4V作为参考。特别是,所研究的镁合金WE43在孔隙率(尺寸和分布)、微观结构、腐蚀速率和腐蚀疲劳性能方面表现出强烈的工艺参数依赖性。对于镁合金WE43,增加试验持续时间的循环试验导致疲劳强度显著降低。可以证明,由于工艺诱导的高表面粗糙度会促进局部强化腐蚀,存在多个裂纹萌生部位,这是疲劳强度急剧下降的主要原因之一。