Suppr超能文献

基于视觉的帕金森病运动徐缓自动量化方法。

Vision-Based Method for Automatic Quantification of Parkinsonian Bradykinesia.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):1952-1961. doi: 10.1109/TNSRE.2019.2939596. Epub 2019 Sep 5.

Abstract

Non-volitional discontinuation of motion, namely bradykinesia, is a common motor symptom among patients with Parkinson's disease (PD). Evaluating bradykinesia severity is an important part of clinical examinations on PD patients in both diagnosis and monitoring phases. However, subjective evaluations from different clinicians often show low consistency. The research works that explore objective quantification of bradykinesia are mostly based on highly-integrated sensors. Although these sensor-based methods demonstrate applaudable performance, it is unrealistic to promote them for wide use because the special devices they require are far from popularized in daily lives. In this paper, we take advantage of computer vision and machine learning technologies, proposing a vision-based method to automatically and objectively quantify bradykinesia severity. Three bradykinesia-related items are investigated in our study: finger tapping, hand clasping and hand pro/supination. In our method, human pose estimation technology is utilized to extract kinematic characteristics and supervised-learning-based classifiers are employed to generate score ratings. Clinical experiment on 60 patients shows that the scoring accuracy of our method over 360 examination videos is 89.7%, which is competitive with other related works. The devices our method requires are only a camera for instrumentation and a laptop for data processing. Therefore, our method can produce reliable assessment results on Parkinsonian bradykinesia with minimal device requirement, showing great potential of realizing long-term remote monitoring on patients' condition.

摘要

非自主运动停止,即运动迟缓,是帕金森病(PD)患者常见的运动症状。评估运动迟缓的严重程度是 PD 患者在诊断和监测阶段临床检查的重要组成部分。然而,不同临床医生的主观评估往往一致性较低。探索运动迟缓客观量化的研究工作大多基于高度集成的传感器。尽管这些基于传感器的方法表现出令人称赞的性能,但由于它们所需的特殊设备远未普及到日常生活中,因此将其推广用于广泛使用是不现实的。在本文中,我们利用计算机视觉和机器学习技术,提出了一种基于视觉的方法,可自动且客观地量化运动迟缓的严重程度。我们的研究调查了三个与运动迟缓相关的项目:手指敲击、握手和手的内旋/外旋。在我们的方法中,利用人体姿态估计技术提取运动学特征,并采用基于监督学习的分类器生成评分。对 60 名患者的临床实验表明,我们的方法在 360 多个检查视频上的评分准确率为 89.7%,与其他相关工作具有竞争力。我们的方法所需的设备仅是用于仪器的摄像头和用于数据处理的笔记本电脑。因此,我们的方法可以用最小的设备要求对帕金森运动迟缓产生可靠的评估结果,显示出实现对患者病情进行长期远程监测的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验