Marshall Fiona, Zhang Shuai, Scotney Bryan W
School of Computing, University of Ulster, Shore Road, Newtownabbey, BT37 0QB Northern Ireland UK.
J Healthc Inform Res. 2022 Sep 23;6(4):401-422. doi: 10.1007/s41666-022-00120-3. eCollection 2022 Dec.
With increasing numbers of people living with dementia, there is growing interest in the automatic monitoring of agitation. Current assessments rely on carer observations within a framework of behavioural scales. Automatic monitoring of agitation can supplement existing assessments, providing carers and clinicians with a greater understanding of the causes and extent of agitation. Despite agitation frequently manifesting in repetitive hand movements, the automatic assessment of repetitive hand movements remains a sparsely researched field. Monitoring hand movements is problematic due to the subtle differences between different types of hand movements and variations in how they can be carried out; the lack of training data creates additional challenges. This paper proposes a novel approach to assess the type and intensity of repetitive hand movements using skeletal model data derived from video. We introduce a video-based dataset of five repetitive hand movements symptomatic of agitation. Using skeletal keypoint locations extracted from video, we demonstrate a system to recognise repetitive hand movements using discriminative poses. By first learning characteristics of the movement, our system can accurately identify changes in the intensity of repetitive movements. Wide inter-subject variation in agitated behaviours suggests the benefit of personalising the recognition model with some end-user information. Our results suggest that data captured using a single conventional RGB video camera can be used to automatically monitor agitated hand movements of sedentary patients.
随着痴呆症患者数量的增加,人们对自动监测激越行为的兴趣日益浓厚。目前的评估依赖于护理人员在行为量表框架内的观察。自动监测激越行为可以补充现有的评估,使护理人员和临床医生更好地了解激越行为的原因和程度。尽管激越行为经常表现为重复性手部动作,但对重复性手部动作的自动评估仍然是一个研究较少的领域。由于不同类型手部动作之间的细微差异以及执行方式的变化,监测手部动作存在问题;缺乏训练数据带来了额外的挑战。本文提出了一种新方法,利用从视频中获取的骨骼模型数据来评估重复性手部动作的类型和强度。我们引入了一个基于视频的数据集,其中包含五种表明激越行为的重复性手部动作。利用从视频中提取的骨骼关键点位置,我们展示了一个使用判别性姿势来识别重复性手部动作的系统。通过首先学习动作的特征,我们的系统可以准确识别重复性动作强度的变化。激越行为在个体间存在很大差异,这表明利用一些终端用户信息对识别模型进行个性化设置是有益的。我们的结果表明,使用单个传统RGB摄像机捕获的数据可用于自动监测久坐患者的激越性手部动作。