Morinan Gareth, Dushin Yuriy, Sarapata Grzegorz, Rupprechter Samuel, Peng Yuwei, Girges Christine, Salazar Maricel, Milabo Catherine, Sibley Krista, Foltynie Thomas, Cociasu Ioana, Ricciardi Lucia, Baig Fahd, Morgante Francesca, Leyland Louise-Ann, Weil Rimona S, Gilron Ro'ee, O'Keeffe Jonathan
Machine Medicine Technologies Ltd., The Leather Market Unit 1.1.1 11/13 Weston Street, London, SE1 3ER, UK.
Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
NPJ Parkinsons Dis. 2023 Jan 27;9(1):10. doi: 10.1038/s41531-023-00454-8.
Parkinson's disease (PD) is a common neurological disorder, with bradykinesia being one of its cardinal features. Objective quantification of bradykinesia using computer vision has the potential to standardise decision-making, for patient treatment and clinical trials, while facilitating remote assessment. We utilised a dataset of part-3 MDS-UPDRS motor assessments, collected at four independent clinical and one research sites on two continents, to build computer-vision-based models capable of inferring the correct severity rating robustly and consistently across all identifiable subgroups of patients. These results contrast with previous work limited by small sample sizes and small numbers of sites. Our bradykinesia estimation corresponded well with clinician ratings (interclass correlation 0.74). This agreement was consistent across four clinical sites. This result demonstrates how such technology can be successfully deployed into existing clinical workflows, with consumer-grade smartphone or tablet devices, adding minimal equipment cost and time.
帕金森病(PD)是一种常见的神经疾病,运动迟缓是其主要特征之一。利用计算机视觉对运动迟缓进行客观量化,有可能使患者治疗和临床试验的决策标准化,同时便于进行远程评估。我们使用了一个数据集,该数据集包含在两大洲四个独立临床机构和一个研究机构收集的第三部分MDS-UPDRS运动评估数据,以构建基于计算机视觉的模型,该模型能够在所有可识别的患者亚组中稳健且一致地推断出正确的严重程度评级。这些结果与以往受小样本量和少量研究机构限制的工作形成对比。我们对运动迟缓的估计与临床医生的评级高度相符(组间相关系数为0.74)。这种一致性在四个临床机构中都是一致的。这一结果表明,这种技术可以通过消费级智能手机或平板电脑设备成功应用于现有的临床工作流程中,且设备成本和时间增加极少。