Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.
Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark.
Neuro Oncol. 2020 Feb 20;22(2):216-228. doi: 10.1093/neuonc/noz159.
Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair.
In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships.
Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action.
Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.
尽管已经投入大量精力来寻找有效的胶质母细胞瘤(GBM)治疗方法,但患者的生存预后仍然不容乐观。非手术治疗中最大的获益来自于放疗,但肿瘤通常会因强大的 DNA 修复而复发。因此,患者可能会受益于具有预防 DNA 修复和与放疗协同作用的治疗方法。在这项工作中,我们研究了杀稻瘟菌素增强放疗的潜力,并进一步揭示了这种离子载体诱导 DNA 损伤和防止修复的新的双重功能。
使用体外原发性 GBM 模型和离体 GBM 患者标本,通过免疫印迹、流式细胞术、免疫荧光、免疫组化和质谱分析来确定杀稻瘟菌素的作用机制。使用原位 GBM 动物异种移植模型进行体内疗效研究。合成杀稻瘟菌素衍生物以提高药物疗效并探索结构-活性关系。
我们在这里报告了杀稻瘟菌素的新的双重功能。杀稻瘟菌素通过靶向同源重组(HR)修复来诱导有毒的 DNA 损伤并防止随后的恢复。杀稻瘟菌素似乎靶向更具辐射抗性的 GBM 干细胞样群体,并与放疗协同作用,显著延迟体内肿瘤形成。我们进一步开发了杀稻瘟菌素衍生物,这些衍生物在保留相同有益作用机制的同时,在体内显示出更大的疗效。
我们的研究结果表明,杀稻瘟菌素具有诱导 DNA 损伤和抑制 HR 的潜力,可极大地增强放疗效果。重要的是,第一代杀稻瘟菌素衍生物显示出更大的疗效,可能为这些药物的临床测试铺平道路。