3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal.
Acta Biomater. 2019 Nov;99:236-246. doi: 10.1016/j.actbio.2019.09.004. Epub 2019 Sep 7.
Microbial infections from post-surgery or other medical-related procedure is a serious health problem. Nowadays, the research is focused on the development of new drug-free materials with antibacterial properties to prevent or minimize the risk of infections. Spider silk is known for its unique biomechanical properties allied with biocompatibility. Recombinant DNA technology allows to bioengineering spider silk with antimicrobial peptides (AMP). Thus, our goal was to bioengineered spider silk proteins with AMP (6mer-HNP1) as an antibacterial drug-free coating for commercial silk sutures (Perma-Hand®) for decreasing bacterial infections. Perma-Hand® sutures were coated with 6mer-HNP1 by dip coating. In vitro tests, using human fetal lung fibroblasts (MRC5), showed that coated sutures sustained cell viability, and also, the contact with red blood cells (RBCs) demonstrate blood compatibility. Also, the coatings inhibited significantly the adherence and formation of biofilm, where sutures coated with 6mer-HNP1 produced a 1.5 log reduction of Methicillin-Resistant Staphylococcus aureus (MRSA) and a 2 log reduction of Escherichia coli (E. coli) compared to the uncoated Perma-Hand® suture. The mechanical properties of Perma-Hand® sutures were not affected by the presence of bioengineered spider silk proteins. Thus, the present work demonstrated that using spider silk drug-free coatings it is possible to improve the antibacterial properties of the commercial sutures. Furthermore, a new class of drug-free sutures for reducing post-implantation infections can be developed. STATEMENT OF SIGNIFICANCE: Microbial infections from post-surgery or other medical-related procedure is a serious health problem. Developing new drug-free materials with antibacterial properties is an approach to prevent or minimize the risk of infections. Spider silk is known for its unique biomechanical properties allied with biocompatibility. Recombinant DNA technology allow to bioengineering spider silk with antimicrobial peptides (AMP). Our goal is bioengineered spider silk proteins with AMP as an antibacterial coating for silk sutures. The coatings showed exceptional antibacterial properties and maintained intrinsic mechanical features. In vitro studies showed a positive effect of the coated sutures on the cell behavior. With this new drug-free bioengineered spider silk coating is possible to develop a new class of drug-free sutures for reducing post-implantation infections.
术后或其他与医疗相关的程序引起的微生物感染是一个严重的健康问题。如今,研究的重点是开发具有抗菌性能的新型无药物材料,以预防或最大限度地降低感染的风险。蛛丝以其独特的生物机械性能和生物相容性而闻名。重组 DNA 技术允许对蛛丝进行生物工程改造,加入抗菌肽 (AMP)。因此,我们的目标是将具有 AMP(6mer-HNP1)的生物工程蛛丝蛋白作为一种抗菌无药物涂层,用于减少细菌感染的商业丝质缝线(Perma-Hand®)。Perma-Hand®缝线通过浸涂法涂覆 6mer-HNP1。体外试验,用人胎肺成纤维细胞(MRC5)进行测试,结果表明涂覆的缝线维持细胞活力,并且与红细胞(RBC)接触显示血液相容性。此外,这些涂层显著抑制了生物膜的附着和形成,其中涂有 6mer-HNP1 的缝线使耐甲氧西林金黄色葡萄球菌(MRSA)减少了 1.5 个对数级,大肠杆菌(E. coli)减少了 2 个对数级,而未涂覆的 Perma-Hand®缝线则减少了 1.5 个对数级。Perma-Hand®缝线的机械性能不受生物工程蛛丝蛋白的存在影响。因此,本研究表明,使用无药物蛛丝涂层可以提高商业缝线的抗菌性能。此外,可以开发出一类用于减少植入后感染的新型无药物缝线。
意义声明:术后或其他与医疗相关的程序引起的微生物感染是一个严重的健康问题。开发具有抗菌性能的新型无药物材料是预防或最大限度地降低感染风险的一种方法。蛛丝以其独特的生物机械性能和生物相容性而闻名。重组 DNA 技术允许对蛛丝进行生物工程改造,加入抗菌肽(AMP)。我们的目标是将具有 AMP(6mer-HNP1)的生物工程蛛丝蛋白作为一种抗菌涂层,用于丝质缝线。这些涂层表现出了出色的抗菌性能,并保持了内在的机械特性。体外研究表明,涂覆缝线对细胞行为有积极影响。通过这种新的无药物生物工程蛛丝涂层,可以开发出一类用于减少植入后感染的新型无药物缝线。
Biomaterials. 2022-11
ACS Appl Mater Interfaces. 2022-3-9
ACS Appl Mater Interfaces. 2015-9-29
J Mater Sci Mater Med. 2014-9
In Vitro Model. 2022-8-31
ACS Biomater Sci Eng. 2024-9-9
Probiotics Antimicrob Proteins. 2024-10
Materials (Basel). 2023-11-20