Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
J Mol Model. 2024 May 2;30(5):156. doi: 10.1007/s00894-024-05945-w.
Due to their excellent biocompatibility and degradability, cellulose/spider silk protein composites hold a significant value in biomedical applications such as tissue engineering, drug delivery, and medical dressings. The interfacial interactions between cellulose and spider silk protein affect the properties of the composite. Therefore, it is important to understand the interfacial interactions between spider silk protein and cellulose to guide the design and optimization of composites. The study of the adsorption of protein on specific surfaces of cellulose crystal can be very complex using experimental methods. Molecular dynamics simulations allow the exploration of various physical and chemical changes at the atomic level of the material and enable an atomic description of the interactions between cellulose crystal planes and spider silk protein. In this study, molecular dynamics simulations were employed to investigate the interfacial interactions between spider silk protein (NTD) and cellulose surfaces. Findings of RMSD, RMSF, and secondary structure showed that the structure of NTD proteins remained unchanged during the adsorption process. Cellulose contact numbers and hydrogen bonding trends on different crystalline surfaces suggest that van der Waals forces and hydrogen bonding interactions drive the binding of proteins to cellulose. These findings reveal the interaction between cellulose and protein at the molecular level and provide theoretical guidance for the design and synthesis of cellulose/spider silk protein composites.
MD simulations were all performed using the GROMACS-5.1 software package and run with CHARMM36 carbohydrate force field. Molecular dynamics simulations were performed for 500 ns for the simulated system.
由于其出色的生物相容性和可降解性,纤维素/蜘蛛丝蛋白复合材料在组织工程、药物输送和医用敷料等生物医学应用中具有重要价值。纤维素和蜘蛛丝蛋白之间的界面相互作用影响复合材料的性能。因此,了解蜘蛛丝蛋白和纤维素之间的界面相互作用对于指导复合材料的设计和优化非常重要。使用实验方法研究蛋白质在纤维素晶体特定表面上的吸附可能非常复杂。分子动力学模拟允许在材料的原子水平上探索各种物理和化学变化,并能够对纤维素晶面和蜘蛛丝蛋白之间的相互作用进行原子描述。在这项研究中,采用分子动力学模拟研究了蜘蛛丝蛋白(NTD)与纤维素表面的界面相互作用。均方根偏差(RMSD)、均方根波动(RMSF)和二级结构的结果表明,NTD 蛋白的结构在吸附过程中保持不变。不同晶面上纤维素的接触数和氢键趋势表明,范德华力和氢键相互作用驱动蛋白质与纤维素的结合。这些发现揭示了纤维素和蛋白质之间在分子水平上的相互作用,为纤维素/蜘蛛丝蛋白复合材料的设计和合成提供了理论指导。
所有 MD 模拟均使用 GROMACS-5.1 软件包和 CHARMM36 碳水化合物力场进行。模拟系统的分子动力学模拟运行了 500ns。