Suppr超能文献

基于全基因组关联研究的深度学习用于生存预测。

Genome-wide association study-based deep learning for survival prediction.

机构信息

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China.

出版信息

Stat Med. 2020 Dec 30;39(30):4605-4620. doi: 10.1002/sim.8743. Epub 2020 Sep 24.

Abstract

Informative and accurate survival prediction with individualized dynamic risk profiles over time is critical for personalized disease prevention and clinical management. The massive genetic data, such as SNPs from genome-wide association studies (GWAS), together with well-characterized time-to-event phenotypes provide unprecedented opportunities for developing effective survival prediction models. Recent advances in deep learning have made extraordinary achievements in establishing powerful prediction models in the biomedical field. However, the applications of deep learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS data. Motivated by developing powerful prediction models for the progression of an eye disease, age-related macular degeneration (AMD), we develop and implement a multilayer deep neural network (DNN) survival model to effectively extract features and make accurate and interpretable predictions. Various simulation studies are performed to compare the prediction performance of the DNN survival model with several other machine learning-based survival models. Finally, using the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 observations, we show that the DNN survival model not only outperforms several existing survival prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects clinically meaningful risk subgroups by effectively learning the complex structures among genetic variants. Moreover, we obtain a subject-specific importance measure for each predictor from the DNN survival model, which provides valuable insights into the personalized early prevention and clinical management for this disease.

摘要

随着时间的推移,提供信息丰富且准确的个体化动态风险概况对于个性化疾病预防和临床管理至关重要。大量的遗传数据,如全基因组关联研究(GWAS)中的 SNPs,以及特征良好的生存时间表型,为开发有效的生存预测模型提供了前所未有的机会。深度学习的最新进展在建立强大的生物医学领域预测模型方面取得了非凡的成就。然而,深度学习方法在生存预测中的应用受到限制,特别是在利用丰富的 GWAS 数据方面。受开发一种用于眼部疾病(年龄相关性黄斑变性,AMD)进展的强大预测模型的启发,我们开发并实施了一种多层深度神经网络(DNN)生存模型,以有效提取特征并进行准确和可解释的预测。进行了各种模拟研究,以比较 DNN 生存模型与其他几种基于机器学习的生存模型的预测性能。最后,使用来自 AMD 两项大型随机临床试验的 GWAS 数据(超过 7800 个观测值),我们表明 DNN 生存模型不仅在预测准确性方面(例如,c 指数=0.76)优于几种现有的生存预测模型,而且还通过有效学习遗传变异之间的复杂结构,成功检测到具有临床意义的风险亚组。此外,我们从 DNN 生存模型中获得了每个预测因子的个体特异性重要性度量,这为该疾病的个性化早期预防和临床管理提供了有价值的见解。

相似文献

1
Genome-wide association study-based deep learning for survival prediction.
Stat Med. 2020 Dec 30;39(30):4605-4620. doi: 10.1002/sim.8743. Epub 2020 Sep 24.
3
4
DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
Bioinformatics. 2019 Dec 15;35(24):5128-5136. doi: 10.1093/bioinformatics/btz464.
5
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
BMC Genomics. 2015;16 Suppl 2(Suppl 2):S5. doi: 10.1186/1471-2164-16-S2-S5. Epub 2015 Jan 21.
6
Approximate Bayesian neural networks in genomic prediction.
Genet Sel Evol. 2018 Dec 22;50(1):70. doi: 10.1186/s12711-018-0439-1.
7
Prediction of adverse drug reactions due to genetic predisposition using deep neural networks.
Mol Inform. 2024 Jun;43(6):e202400021. doi: 10.1002/minf.202400021. Epub 2024 Jun 8.
9
A deep neural network-based approach for prediction of mutagenicity of compounds.
Environ Sci Pollut Res Int. 2021 Sep;28(34):47641-47650. doi: 10.1007/s11356-021-14028-9. Epub 2021 Apr 24.
10
Deep Learning Approaches for Automatic Localization in Medical Images.
Comput Intell Neurosci. 2022 Jun 29;2022:6347307. doi: 10.1155/2022/6347307. eCollection 2022.

引用本文的文献

3
Cross-attention enables deep learning on limited omics-imaging-clinical data of 130 lung cancer patients.
Cell Rep Methods. 2024 Jul 15;4(7):100817. doi: 10.1016/j.crmeth.2024.100817. Epub 2024 Jul 8.
4
Explainable artificial intelligence for omics data: a systematic mapping study.
Brief Bioinform. 2023 Nov 22;25(1). doi: 10.1093/bib/bbad453.
5
PathExpSurv: pathway expansion for explainable survival analysis and disease gene discovery.
BMC Bioinformatics. 2023 Nov 15;24(1):434. doi: 10.1186/s12859-023-05535-2.
6
Artificial intelligence for dementia genetics and omics.
Alzheimers Dement. 2023 Dec;19(12):5905-5921. doi: 10.1002/alz.13427. Epub 2023 Aug 22.
7
Heuristic Analysis of Genomic Sequence Processing Models for High Efficiency Prediction: A Statistical Perspective.
Curr Genomics. 2022 Nov 18;23(5):299-317. doi: 10.2174/1389202923666220927105311.
8
Neural Networks for Survival Prediction in Medicine Using Prognostic Factors: A Review and Critical Appraisal.
Comput Math Methods Med. 2022 Sep 30;2022:1176060. doi: 10.1155/2022/1176060. eCollection 2022.
10
Default risk prediction and feature extraction using a penalized deep neural network.
Stat Comput. 2022;32(5):76. doi: 10.1007/s11222-022-10140-z. Epub 2022 Sep 15.

本文引用的文献

1
Copula-based semiparametric regression method for bivariate data under general interval censoring.
Biostatistics. 2021 Apr 10;22(2):315-330. doi: 10.1093/biostatistics/kxz032.
2
Bayesian Neural Networks for Selection of Drug Sensitive Genes.
J Am Stat Assoc. 2018;113(523):955-972. doi: 10.1080/01621459.2017.1409122. Epub 2018 Jun 28.
3
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018 Mar;2(3):158-164. doi: 10.1038/s41551-018-0195-0. Epub 2018 Feb 19.
4
Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies.
Am J Hum Genet. 2019 Feb 7;104(2):260-274. doi: 10.1016/j.ajhg.2018.12.012. Epub 2019 Jan 10.
5
Copula-based score test for bivariate time-to-event data, with application to a genetic study of AMD progression.
Lifetime Data Anal. 2019 Jul;25(3):546-568. doi: 10.1007/s10985-018-09459-5. Epub 2018 Dec 17.
6
Bagging and deep learning in optimal individualized treatment rules.
Biometrics. 2019 Jun;75(2):674-684. doi: 10.1111/biom.12990. Epub 2019 Mar 29.
8
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data.
PLoS Comput Biol. 2018 Apr 10;14(4):e1006076. doi: 10.1371/journal.pcbi.1006076. eCollection 2018 Apr.
9
DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network.
BMC Med Res Methodol. 2018 Feb 26;18(1):24. doi: 10.1186/s12874-018-0482-1.
10
Genome-wide analysis of disease progression in age-related macular degeneration.
Hum Mol Genet. 2018 Mar 1;27(5):929-940. doi: 10.1093/hmg/ddy002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验