Suppr超能文献

通过计算电生理模拟进行门控电荷计算

Gating Charge Calculations by Computational Electrophysiology Simulations.

作者信息

Machtens Jan-Philipp, Briones Rodolfo, Alleva Claudia, de Groot Bert L, Fahlke Christoph

机构信息

Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.

Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2017 Apr 11;112(7):1396-1405. doi: 10.1016/j.bpj.2017.02.016.

Abstract

Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na ions in Na-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.

摘要

细胞电信号传导需要根据膜电位的变化来调节离子通道、受体或转运蛋白的功能。对于大多数此类膜蛋白,电压传感的分子细节仍未得到充分了解。在这里,我们提出了一种基于分子动力学模拟的方法,通过测量膜嵌入蛋白的电容特性来确定跨膜的潜在电荷移动——门控电荷。我们通过计算HIV gp41融合肽插入膜时的电荷转移来说明该方法,并针对两种典型的电压依赖性蛋白,即Kv1.2钾通道和海鞘电压敏感磷酸酶的电压传感器,根据实验数据验证了该方法。然后,我们使用门控电荷分析来研究T1结构域如何改变Kv1.2通道中的电压传感,并研究钠偶联谷氨酸转运体中两个钠离子初始结合的电压依赖性。我们的模拟方法量化了电压传感的各种机制,能够与实验进行直接比较,并支持通过氨基酸分数贡献对电压敏感性进行机理解释。

相似文献

5
Environment of the gating charges in the Kv1.2 Shaker potassium channel.Kv1.2 摇椅式钾通道门控电荷的环境
Biophys J. 2006 May 1;90(9):L64-6. doi: 10.1529/biophysj.106.080754. Epub 2006 Mar 13.
6
Mechanism of voltage gating in potassium channels.钾通道电压门控机制。
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
10
Free-energy landscape of ion-channel voltage-sensor-domain activation.离子通道电压传感器结构域激活的自由能景观
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):124-9. doi: 10.1073/pnas.1416959112. Epub 2014 Dec 22.

引用本文的文献

1
Atomistic mechanism of noncanonical voltage gating in K channels.钾通道中非典型电压门控的原子机制。
Sci Adv. 2025 Aug 8;11(32):eadx1680. doi: 10.1126/sciadv.adx1680. Epub 2025 Aug 6.
6
7
Continuum Gating Current Models Computed with Consistent Interactions.用一致相互作用计算的连续门控电流模型。
Biophys J. 2019 Jan 22;116(2):270-282. doi: 10.1016/j.bpj.2018.11.3140. Epub 2018 Dec 14.
8
Determining the molecular basis of voltage sensitivity in membrane proteins.确定膜蛋白电压敏感性的分子基础。
J Gen Physiol. 2018 Oct 1;150(10):1444-1458. doi: 10.1085/jgp.201812086. Epub 2018 Aug 27.

本文引用的文献

2
Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors.G蛋白偶联受体中电压感应的结构机制
Structure. 2016 Jun 7;24(6):997-1007. doi: 10.1016/j.str.2016.04.007. Epub 2016 May 19.
5
Insights into the function of ion channels by computational electrophysiology simulations.通过计算电生理模拟深入了解离子通道的功能。
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1741-52. doi: 10.1016/j.bbamem.2016.02.006. Epub 2016 Feb 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验