Machtens Jan-Philipp, Briones Rodolfo, Alleva Claudia, de Groot Bert L, Fahlke Christoph
Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.
Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Biophys J. 2017 Apr 11;112(7):1396-1405. doi: 10.1016/j.bpj.2017.02.016.
Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na ions in Na-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.
细胞电信号传导需要根据膜电位的变化来调节离子通道、受体或转运蛋白的功能。对于大多数此类膜蛋白,电压传感的分子细节仍未得到充分了解。在这里,我们提出了一种基于分子动力学模拟的方法,通过测量膜嵌入蛋白的电容特性来确定跨膜的潜在电荷移动——门控电荷。我们通过计算HIV gp41融合肽插入膜时的电荷转移来说明该方法,并针对两种典型的电压依赖性蛋白,即Kv1.2钾通道和海鞘电压敏感磷酸酶的电压传感器,根据实验数据验证了该方法。然后,我们使用门控电荷分析来研究T1结构域如何改变Kv1.2通道中的电压传感,并研究钠偶联谷氨酸转运体中两个钠离子初始结合的电压依赖性。我们的模拟方法量化了电压传感的各种机制,能够与实验进行直接比较,并支持通过氨基酸分数贡献对电压敏感性进行机理解释。