精神分裂症中动态连接状态下跨域互信息的降低
Decreased Cross-Domain Mutual Information in Schizophrenia From Dynamic Connectivity States.
作者信息
Salman Mustafa S, Vergara Victor M, Damaraju Eswar, Calhoun Vince D
机构信息
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.
出版信息
Front Neurosci. 2019 Aug 22;13:873. doi: 10.3389/fnins.2019.00873. eCollection 2019.
The study of dynamic functional network connectivity (dFNC) has been important to understand the healthy and diseased brain. Recent developments model groups of functionally related brain structures (defined as functional domains) as entities that can send and receive information. A domain analysis starts by detecting a finite set of connectivity patterns known as domain states within each functional domain. Dynamic functional domain connectivity (DFDC) is a novel information theoretic framework for studying the temporal sequence of the domain states and the amount of information shared among domains. In this setting, the information flow among functional domains can be compared to the flow of bits among entities in a digital network. Schizophrenia is a chronic psychiatric disorder which is associated with how the brain processes information. Here, we employed the DFDC framework to analyze a dataset containing resting-state fMRI scans from 163 healthy controls (HCs) and 151 schizophrenia patients (SZs). As in other information theory methods, this study measured domain state probabilities, entropy within each DFDC and the cross-domain mutual information (CDMI) between pairs of DFDC. Results indicate that SZs show significantly higher (transformed) entropy than HCs in subcortical (SC)-SC; default mode network (DMN)-visual (VIS) and frontoparietal (FRN)-VIS DFDCs. SZs also show lower (transformed) CDMI between SC-VIS vs. SC-sensorimotor (SM), attention (ATTN)-VIS vs. ATTN-SM and ATTN-SM vs. ATTN-ATTN DFDC pairs after correcting for multiple comparisons. These results imply that different DFDC pairs function in a more independent manner in SZs compared to HCs. Our findings present evidence of higher uncertainty and randomness in SZ brain function.
动态功能网络连接性(dFNC)的研究对于理解健康和患病大脑至关重要。最近的进展将功能相关的脑结构组(定义为功能域)建模为能够发送和接收信息的实体。域分析首先在每个功能域内检测一组有限的连接模式,即域状态。动态功能域连接性(DFDC)是一种新颖的信息理论框架,用于研究域状态的时间序列以及各域之间共享的信息量。在这种情况下,功能域之间的信息流可以与数字网络中实体之间的比特流进行比较。精神分裂症是一种慢性精神疾病,与大脑处理信息的方式有关。在这里,我们采用DFDC框架分析了一个数据集,该数据集包含来自163名健康对照者(HCs)和151名精神分裂症患者(SZs)的静息态功能磁共振成像扫描数据。与其他信息理论方法一样,本研究测量了域状态概率、每个DFDC内的熵以及成对DFDC之间的跨域互信息(CDMI)。结果表明,在皮层下(SC)-SC、默认模式网络(DMN)-视觉(VIS)和额顶叶(FRN)-VIS DFDC中,SZs的(转换后)熵显著高于HCs。在进行多重比较校正后,SZs在SC-VIS与SC-感觉运动(SM)、注意力(ATTN)-VIS与ATTN-SM以及ATTN-SM与ATTN-ATTN DFDC对之间的(转换后)CDMI也较低。这些结果意味着与HCs相比,不同的DFDC对在SZs中以更独立的方式发挥作用。我们的研究结果提供了SZ大脑功能中存在更高不确定性和随机性的证据。
相似文献
Front Neurosci. 2019-8-22
J Neurosci Methods. 2017-6-1
引用本文的文献
Schizophrenia (Heidelb). 2023-3-30
Front Neurosci. 2021-11-11
Front Hum Neurosci. 2021-3-22
Soc Cogn Affect Neurosci. 2021-8-5
本文引用的文献
Front Psychiatry. 2019-7-23
Front Psychiatry. 2018-7-31
Front Neurosci. 2017-11-7
J Neurosci Methods. 2017-6-1
Annu Int Conf IEEE Eng Med Biol Soc. 2016-8