Suppr超能文献

静态和动态跨网络功能连接显示精神分裂症患者的熵值升高。

Static and Dynamic Cross-Network Functional Connectivity Shows Elevated Entropy in Schizophrenia Patients.

作者信息

Maksymchuk Natalia, Bustillo Juan R, Mathalon Daniel H, Preda Adrian, Miller Robyn L, Calhoun Vince D

机构信息

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA.

出版信息

bioRxiv. 2024 Jun 17:2024.06.15.599084. doi: 10.1101/2024.06.15.599084.

Abstract

Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available brain networks between SZ patients and healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time-varying connectivity strength across functional regions from each source network, compared to healthy control group. C-means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large-scale functional entropy correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle with transiently attaining these more focused and structured connectivity patterns. Proposed ICE measure presents a novel framework for gaining deeper insights into understanding mechanisms of healthy and disease brain states and a substantial step forward in the developing advanced methods of diagnostics of mental health conditions.

摘要

精神分裂症(SZ)患者在各个脑区表现出异常的静态和动态功能连接。我们提出了一种基于静态和动态网络间连接熵(ICE)的新方法,该方法表示给定网络与所有其他脑网络连接的熵。这种新方法能够研究连接强度在SZ患者和健康对照中如何在可用目标之间异质性分布。我们分析了151例精神分裂症患者和人口统计学匹配的160名健康对照的功能磁共振成像(fMRI)数据。我们的评估包括静态和动态ICE,揭示了SZ患者和健康对照(HC)在可用脑网络间连接水平异质性上的显著差异。这些网络与皮质下(SC)、听觉(AUD)、感觉运动(SM)、视觉(VIS)、认知控制(CC)、默认模式网络(DMN)和小脑(CB)功能脑区相关。在SZ个体中观察到的ICE升高表明,与健康对照组相比,患者在每个源网络功能区域的时变连接强度分布中表现出显著更高的随机性。对功能ICE相关矩阵的C均值模糊聚类分析表明,SZ患者在具有弱、低尺度功能熵相关性的聚类中表现出显著更高的占据权重,而对照组在具有强、高尺度功能熵相关性的聚类中表现出更大的占据权重。对按时间索引的ICE向量进行k均值聚类分析表明,ICE最高的聚类在SZ患者中具有更高的占有率,而ICE最低的聚类在对照组中具有更大的占有率。此外,我们的动态ICE方法表明,大脑主要通过复杂、结构较少的连接模式循环,偶尔转变为更集中的模式似乎是健康的。然而,SZ个体似乎难以短暂地达到这些更集中和结构化的连接模式。提出的ICE测量方法为深入理解健康和疾病脑状态的机制提供了一个新框架,是心理健康状况诊断先进方法发展中的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验