Vergara Victor M, Miller Robyn, Calhoun Vince
The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, 87106 NM, United States.
The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd. NE, Albuquerque, 87106 NM, United States.
J Neurosci Methods. 2017 Jun 1;284:103-111. doi: 10.1016/j.jneumeth.2017.04.009. Epub 2017 Apr 23.
Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains.
Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI).
Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found.
Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains.
Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity.
动态功能网络连接性(dFNC)分析大脑中相干活动的时间演变。在该技术中,考虑的是全脑的动态变化。本文提出了一个信息理论框架,用于测量在称为功能域的功能网络子集中流动的信息。
我们的方法旨在估计各域中包含和共享的信息量。在域级别估计动态功能状态的序列。信息量基于观察每个动态状态的概率。然后从跨域的概率中获得互信息测量值。因此,我们将这个值命名为跨域互信息(CDMI)。
观察到与皮质下域相关的强CDMI。与感觉输入、运动控制和小脑相关的域形成另一个CDMI簇。很少发现其他域之间的信息流。
其他动态连接性方法关注全脑dFNC矩阵。在当前框架中,信息理论应用于从多网络功能域对估计的状态。在此背景下,我们应用信息理论来测量跨功能域的信息流。
识别出的CDMI簇指向基底神经节中已知的信息通路,以及感觉输入区域之间在静态功能连接中发现的模式。相比之下,跨高级认知处理脑区的CDMI遵循不同的模式,表明信息共享较少。这些发现表明,采用信息理论来正式测量通过脑域的信息流揭示了功能连接性的其他特征。