Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China.
X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
Adv Mater. 2019 Nov;31(44):e1904496. doi: 10.1002/adma.201904496. Epub 2019 Sep 11.
Single-atom catalysts (SACs) feature the maximum atom economy and superior performance for various catalysis fields, attracting tremendous attention in materials science. However, conventional synthesis of SACs involves high energy consumption at high temperature, complicated procedures, a massive waste of metal species, and poor yields, greatly impeding their development. Herein, a facile dangling bond trapping strategy to construct SACs under ambient conditions from easily accessible bulk metals (such as Fe, Co, Ni, and Cu) is presented. When mixing graphene oxide (GO) slurry with metal foam and drying in ambient conditions, the M would transfer electrons to the dangling oxygen groups on GO, obtaining M (0 < δ < 3) species. Meanwhile, M coordinates with the surface oxygen dangling bonds of GO to form MO bonds. Subsequently, the metal atoms are pulled out of the metal foam by the MO bonds under the assistance of sonication to give M SAs/GO materials. This synthesis at room temperature from bulk metals provides a versatile platform for facile and low-cost fabrication of SACs, crucial for their mass production and practical application in diverse industrial reactions.
单原子催化剂 (SACs) 具有最高的原子经济性和卓越的各种催化领域性能,在材料科学领域引起了极大的关注。然而,SACs 的传统合成方法需要在高温下消耗大量能源,且步骤复杂、金属物种浪费严重、产率低,严重阻碍了其发展。在此,提出了一种在环境条件下从易得的块状金属(如 Fe、Co、Ni 和 Cu)构建 SACs 的简便悬空键捕获策略。当混合氧化石墨烯 (GO) 浆料与金属泡沫并在环境条件下干燥时,M 会将电子转移到 GO 上的悬空氧基团上,得到 M(0<δ<3)物种。同时,M 与 GO 的表面氧悬空键配位形成 MO 键。随后,在超声辅助下,MO 键将金属原子从金属泡沫中拔出,得到 M SAs/GO 材料。这种从块状金属在室温下的合成方法为 SACs 的简便、低成本制造提供了一个通用平台,对于它们的大规模生产和在各种工业反应中的实际应用至关重要。