Suppr超能文献

通过表面悬空键捕获原子实现体相金属中单原子催化剂的环境合成。

Ambient Synthesis of Single-Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds.

机构信息

Department of Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, 230026, China.

X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.

出版信息

Adv Mater. 2019 Nov;31(44):e1904496. doi: 10.1002/adma.201904496. Epub 2019 Sep 11.

Abstract

Single-atom catalysts (SACs) feature the maximum atom economy and superior performance for various catalysis fields, attracting tremendous attention in materials science. However, conventional synthesis of SACs involves high energy consumption at high temperature, complicated procedures, a massive waste of metal species, and poor yields, greatly impeding their development. Herein, a facile dangling bond trapping strategy to construct SACs under ambient conditions from easily accessible bulk metals (such as Fe, Co, Ni, and Cu) is presented. When mixing graphene oxide (GO) slurry with metal foam and drying in ambient conditions, the M would transfer electrons to the dangling oxygen groups on GO, obtaining M (0 < δ < 3) species. Meanwhile, M coordinates with the surface oxygen dangling bonds of GO to form MO bonds. Subsequently, the metal atoms are pulled out of the metal foam by the MO bonds under the assistance of sonication to give M SAs/GO materials. This synthesis at room temperature from bulk metals provides a versatile platform for facile and low-cost fabrication of SACs, crucial for their mass production and practical application in diverse industrial reactions.

摘要

单原子催化剂 (SACs) 具有最高的原子经济性和卓越的各种催化领域性能,在材料科学领域引起了极大的关注。然而,SACs 的传统合成方法需要在高温下消耗大量能源,且步骤复杂、金属物种浪费严重、产率低,严重阻碍了其发展。在此,提出了一种在环境条件下从易得的块状金属(如 Fe、Co、Ni 和 Cu)构建 SACs 的简便悬空键捕获策略。当混合氧化石墨烯 (GO) 浆料与金属泡沫并在环境条件下干燥时,M 会将电子转移到 GO 上的悬空氧基团上,得到 M(0<δ<3)物种。同时,M 与 GO 的表面氧悬空键配位形成 MO 键。随后,在超声辅助下,MO 键将金属原子从金属泡沫中拔出,得到 M SAs/GO 材料。这种从块状金属在室温下的合成方法为 SACs 的简便、低成本制造提供了一个通用平台,对于它们的大规模生产和在各种工业反应中的实际应用至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验