Suppr超能文献

严重创伤性脑损伤后时变生理状态描述的隐马尔可夫模型的可行性。

Feasibility of Hidden Markov Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury.

机构信息

Department of Biomedical Engineering, California State University, Long Beach, CA.

Department of Computer Engineering and Computer Science, California State University, Long Beach, CA.

出版信息

Crit Care Med. 2019 Nov;47(11):e880-e885. doi: 10.1097/CCM.0000000000003966.

Abstract

OBJECTIVES

Continuous assessment of physiology after traumatic brain injury is essential to prevent secondary brain insults. The present work aims at the development of a method for detecting physiologic states associated with the outcome from time-series physiologic measurements using a hidden Markov model.

DESIGN

Unsupervised clustering of hourly values of intracranial pressure/cerebral perfusion pressure, the compensatory reserve index, and autoregulation status was attempted using a hidden Markov model. A ternary state variable was learned to classify the patient's physiologic state at any point in time into three categories ("good," "intermediate," or "poor") and determined the physiologic parameters associated with each state.

SETTING

The proposed hidden Markov model was trained and applied on a large dataset (28,939 hr of data) using a stratified 20-fold cross-validation.

PATIENTS

The data were collected from 379 traumatic brain injury patients admitted to Addenbrooke's Hospital, Cambridge between 2002 and 2016.

INTERVENTIONS

Retrospective observational analysis.

MEASUREMENTS AND MAIN RESULTS

Unsupervised training of the hidden Markov model yielded states characterized by intracranial pressure, cerebral perfusion pressure, compensatory reserve index, and autoregulation status that were physiologically plausible. The resulting classifier retained a dose-dependent prognostic ability. Dynamic analysis suggested that the hidden Markov model was stable over short periods of time consistent with typical timescales for traumatic brain injury pathogenesis.

CONCLUSIONS

To our knowledge, this is the first application of unsupervised learning to multidimensional time-series traumatic brain injury physiology. We demonstrated that clustering using a hidden Markov model can reduce a complex set of physiologic variables to a simple sequence of clinically plausible time-sensitive physiologic states while retaining prognostic information in a dose-dependent manner. Such states may provide a more natural and parsimonious basis for triggering intervention decisions.

摘要

目的

创伤性脑损伤后持续评估生理学对于预防继发性脑损伤至关重要。本研究旨在开发一种使用隐马尔可夫模型从时间序列生理学测量中检测与结果相关的生理状态的方法。

设计

使用隐马尔可夫模型尝试对颅内压/脑灌注压、代偿储备指数和自动调节状态的每小时值进行无监督聚类。学习一个三态变量将患者的生理状态在任何时间点分类为三个类别(“良好”、“中等”或“差”),并确定与每个状态相关的生理参数。

环境

使用分层 20 折交叉验证,在一个大型数据集(28939 小时的数据)上对提出的隐马尔可夫模型进行了训练和应用。

患者

数据来自于 2002 年至 2016 年期间在剑桥 Addenbrooke 医院收治的 379 名创伤性脑损伤患者。

干预措施

回顾性观察性分析。

测量和主要结果

隐马尔可夫模型的无监督训练产生了具有颅内压、脑灌注压、代偿储备指数和自动调节状态特征的状态,这些状态在生理学上是合理的。所得分类器保留了剂量依赖性的预后能力。动态分析表明,隐马尔可夫模型在短时间内是稳定的,与创伤性脑损伤发病机制的典型时间尺度一致。

结论

据我们所知,这是首次将无监督学习应用于多维时间序列创伤性脑损伤生理学。我们证明,使用隐马尔可夫模型进行聚类可以将一组复杂的生理变量简化为一组简单的临床合理的时间敏感生理状态,同时以剂量依赖的方式保留预后信息。这些状态可能为触发干预决策提供更自然和简约的基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验