Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow, Russia.
Prog Mol Biol Transl Sci. 2019;166:1-17. doi: 10.1016/bs.pmbts.2019.05.003. Epub 2019 Jun 8.
The functional proteome of a given organism noticeably exceeds its corresponding genome due to various events at the DNA (genetic variations), mRNA (alternative splicing, alternative promoter usage, alternative initiation of translation, and mRNA editing), and protein levels (post-translational modifications) that results in the appearance of various proteoforms; i.e., different molecular forms in which the protein product of a single gene can be found. In addition to these induced proteoforms, basic (or intrinsic, or conformational) proteoforms are generated due to the presence of intrinsically disordered or structurally flexible regions in a protein. Furthermore, protein functionality can affect the structural ensemble of both conformational and induced proteoforms, and hence serves as a factor generating functioning proteoforms. Therefore, a single gene encodes for a wide array of different proteoforms, which represents the foundation for protein multifunctionality. In other words, instead of the classical protein structure-function paradigm rooted in the "one-gene-one-protein-one-function" model, a correlation between between protein structure and function is described by a more general "protein structure-function continuum" model, where a given protein exists as a dynamic conformational ensemble containing multiple proteoforms (conformational/basic, inducible/modified, and functioning) characterized by a broad spectrum of structural features and possessing various functional potentials.
由于 DNA(遗传变异)、mRNA(选择性剪接、选择性启动子使用、翻译起始的选择性和 mRNA 编辑)和蛋白质水平(翻译后修饰)等各种事件,给定生物体的功能蛋白质组明显超过其相应的基因组,从而产生各种蛋白质形式;即,在单个基因的蛋白质产物中可以发现不同的分子形式。除了这些诱导的蛋白质形式之外,由于蛋白质中存在固有无序或结构灵活的区域,还会产生基本(或固有、或构象)蛋白质形式。此外,蛋白质功能会影响构象和诱导蛋白质形式的结构整体,因此是产生功能性蛋白质形式的因素之一。因此,单个基因编码多种不同的蛋白质形式,这是蛋白质多功能性的基础。换句话说,代替经典的基于“一个基因一个蛋白质一个功能”模型的蛋白质结构-功能范例,蛋白质结构和功能之间的相关性是由更通用的“蛋白质结构-功能连续体”模型描述的,其中给定的蛋白质作为一个动态的构象整体存在,包含多种蛋白质形式(构象/基本、诱导/修饰和功能),具有广泛的结构特征和多种功能潜力。