Suppr超能文献

利用深度学习预测下肢关节置换术患者的住院费用:哪种模型架构最佳?

Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?

机构信息

Machine Learning Arthroplasty Laboratory, Cleveland Clinic, Cleveland, OH.

Said School of Business, University of Oxford, Oxford, UK.

出版信息

J Arthroplasty. 2019 Oct;34(10):2235-2241.e1. doi: 10.1016/j.arth.2019.05.048. Epub 2019 Jun 3.

Abstract

BACKGROUND

Recent advances in machine learning have given rise to deep learning, which uses hierarchical layers to build models, offering the ability to advance value-based healthcare by better predicting patient outcomes and costs of a given treatment. The purpose of this study is to compare the performance of 2 common deep learning models, traditional multilayer perceptron (MLP), and the newer dense neural network (DenseNet), in predicting outcomes for primary total hip arthroplasty (THA) and total knee arthroplasty (TKA) as a foundation for future musculoskeletal studies seeking to utilize machine learning.

METHODS

Using 295,605 patients undergoing primary THA and TKA from a New York State inpatient administrative database from 2009 to 2016, 2 neural network designs (MLP vs DenseNet) with different model regularization techniques (dropout, batch normalization, and DeCovLoss) were applied to compare model performance on predicting inpatient procedural cost using the area under the receiver operating characteristic curve (AUC). Models were implemented to identify high-cost surgical cases.

RESULTS

DenseNet performed similarly to or better than MLP across the different regularization techniques in predicting procedural costs of THA and TKA. Applying regularization to DenseNet resulted in a significantly higher AUC as compared to DenseNet alone (0.813 vs 0.792, P = .011). When regularization methods were applied to MLP, the AUC was significantly lower than without regularization (0.621 vs 0.791, P = 1.1 × 10). When the optimal MLP and DenseNet models were compared in a head-to-head fashion, they performed similarly at cost prediction (P > .999).

CONCLUSION

This study establishes that in predicting costs of lower extremity arthroplasty, DenseNet models improve in performance with regularization, whereas simple neural network models perform significantly worse without regularization. In light of the resource-intensive nature of creating and testing deep learning models for orthopedic surgery, particularly for value-centric procedures such as arthroplasty, this study establishes a set of key technical features that resulted in better prediction of inpatient surgical costs. We demonstrated that regularization is critically important for neural networks in arthroplasty cost prediction and that future studies should utilize these deep learning techniques to predict arthroplasty costs.

LEVEL OF EVIDENCE

III.

摘要

背景

机器学习的最新进展催生了深度学习,它使用分层层来构建模型,通过更好地预测患者的预后和特定治疗的成本,为基于价值的医疗保健提供了帮助。本研究的目的是比较两种常见的深度学习模型,传统多层感知机(MLP)和较新的密集神经网络(DenseNet),在预测初次全髋关节置换术(THA)和全膝关节置换术(TKA)结果方面的性能,为未来希望利用机器学习的肌肉骨骼研究奠定基础。

方法

使用来自 2009 年至 2016 年纽约州住院患者管理数据库的 295605 例初次 THA 和 TKA 患者,应用 2 种神经网络设计(MLP 与 DenseNet)和不同的模型正则化技术(辍学、批量归一化和 DeCovLoss),通过比较接受者操作特征曲线下的面积(AUC),比较模型在预测住院手术费用方面的性能。模型用于识别高成本手术病例。

结果

在不同的正则化技术中,DenseNet 在预测 THA 和 TKA 的手术费用方面的表现与 MLP 相似或优于 MLP。与单独的 DenseNet 相比,应用正则化后 DenseNet 的 AUC 显著提高(0.813 对 0.792,P=0.011)。当将正则化方法应用于 MLP 时,AUC 显著低于没有正则化时(0.621 对 0.791,P=1.1×10)。当对头对头比较最佳的 MLP 和 DenseNet 模型时,它们在成本预测方面表现相似(P>0.999)。

结论

本研究表明,在预测下肢关节置换术的成本方面,使用正则化的 DenseNet 模型的性能得到了提高,而没有正则化的简单神经网络模型的性能则明显下降。鉴于为骨科手术创建和测试深度学习模型的资源密集型性质,特别是对于关节置换等以价值为中心的手术,本研究确定了一组关键技术特征,这些特征可以更好地预测住院手术费用。我们证明了正则化对于关节置换术成本预测中的神经网络至关重要,未来的研究应利用这些深度学习技术来预测关节置换术的成本。

证据等级

III。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验